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Abstract 

 
An intrinsic part of seeing objects is seeing how similar or different they are relative to one 

another.  This experience requires that objects be mentally represented in a common format 

over which such comparisons can be carried out.  What is that representational format?  Objects 

could be compared in terms of their superficial features (e.g. degree of pixel-by-pixel overlap), 

but a more intriguing possibility is that they are compared on the basis of a deeper structure.  

One especially promising candidate that has enjoyed success in the computer vision literature is 

the shape skeleton — a geometric transformation that represents objects according to their 

inferred underlying organization.  Despite several hints that shape skeletons are computed in 

human vision, it remains unclear how much they actually matter for subsequent performance.  

Here we explore the possibility that shape skeletons help mediate the ability to extract visual 

similarity.  Observers completed a same/different task in which two shapes could vary either in 

their skeletal structure (without changing superficial features such as size, orientation, and 

internal angular separation) or in large surface-level ways (without changing overall skeletal 

organization).  Discrimination was better for skeletally dissimilar shapes: observers had 

difficulty appreciating even surprisingly large differences when those differences did not 

reorganize the underlying skeletons.  This pattern also generalized beyond line drawings to 3D 

volumes whose skeletons were less readily inferable from the shapes’ visible contours.  These 

results show how shape skeletons may influence the perception of similarity — and more 

generally how they have important consequences for downstream visual processing. 
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Introduction 

 
 Objects in the world routinely strike us as being similar or dissimilar to one another, or to 

themselves at different times.  Indeed, comparisons of this sort are often crucial in everyday life, 

as when we judge that a novel object belongs to an existing category, or when we determine 

whether a given object is one that we’ve seen before.  This capacity is especially critical for 

objects that can take on multiple visually distinct configurations, such as an animal that may 

assume different postures or a man-made artifact with movable parts (e.g., a collapsible 

umbrella or a folding chair). 

The ability to compare objects in this way requires (almost by definition) that the mind 

represent objects in a common language or format that could enable these comparisons.  What is 

this format, such that we can compare individual objects across time and space? 

Superficial Features vs. Deeper Structure  

 In order to determine how similar or different two objects are, the mind could compare 

them using a variety of different approaches, which have classically fallen into two categories.  

One approach prioritizes superficial features of the objects, such as their visible contours.  For 

example, the visual system could align the two objects as best as possible and then calculate the 

degree of pixel-by-pixel overlap between them, or assess the degree to which they share similar 

features — such as the extents of their spatial envelopes, the lengths of their perimeters, or the 

angles between edges.  Such approaches have been posited to explain aspects of object 

recognition in human vision (e.g. Corballis, 1988; Tarr & Pinker, 1989; Ullman, 1989) and have 

also been implemented in limited ways in computer vision systems (e.g. Bolles & Cain, 1982; 

Cortese & Dyre, 1996; Ferrari et al., 2010; Zhang & Lu, 2002). 

 However, a prominent difficulty with such approaches is that they are unable to 

categorize objects as being the same when they fail to share the relevant superficial features.  

Consider, for example, a human hand: such an ‘object’ can assume a variety of different poses 

— from a clenched fist to a precision grip to an extended wave — but feature-based approaches 
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will be frustrated by such transformations, and may too readily conclude that they are entirely 

different objects (see Figure 1a). 

  An alternative approach, then, is to represent shapes at a deeper level of organization — 

one that remains constant over these sorts of transformations to an object’s global shape.  Such 

approaches infer an object’s underlying structure and take advantage of invariant relationships 

between parts of that structure when computing similarity (e.g. in the geons of Biederman, 1987 

and Hummel & Biederman, 1992; the part structure based on curvature minima of Hoffman & 

Richards, 1984; and the generalized cylinders of Marr & Nishihara, 1978), in a way that may 

mirror the organization of the object itself.  For example, just as the literal parts of a hand — its 

bones and joints — remain connected to one another in the same way regardless of the hand’s 

pose, an object’s inferred interior structure would remain similarly invariant over such 

transformations.  Thus, if two objects share the same underlying structure, they can be 

represented as such. 

Shape Skeletons 

An especially intriguing candidate for this underlying structure is the shape skeleton, a 

geometric transformation that defines such a structure in terms of an object’s local symmetry 

axes.  The shape skeleton is typically formalized as the set of all points equidistant from two or 

more points on a shape’s boundary — a construct known as the “medial axis” (Blum, 1973; for 

related definitions, see Aichholzer et al., 1995; Feldman & Singh, 2006; Serra, 1986).  For some 

simple shapes (such as the triangle in Figure 2a), this definition merely picks out the global 

symmetry axes themselves, but for others (such as the rectangle in Figure 2b) it picks out more 

complex collections of points. 

Further analysis can then group this collection of points into a hierarchical structure, 

with some points being localized onto more peripheral ‘branches’ that are seen as stemming 

from a more central ‘trunk’.  This yields a representation that emphasizes the underlying 

connectivity and topology of a shape (as explored by Feldman & Singh, 2006), in a way that 

overcomes the challenge of comparing superficially different forms and allows for objects to be 
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recognized as similar even when contextual factors, such as the object’s orientation or the angle 

of viewing, are dramatically different.  Moreover, when applied to images of natural or 

everyday objects (as in Figure 1b), the shape skeleton tends to capture an object’s essential part 

structure — and, in the case of a living thing, may even respect biomechanical constraints, such 

as the possible articulations of its limbs.  For these sorts of reasons, representing and comparing 

objects based on their shape skeletons — in a way that can directly fuel similarity judgments — 

has enjoyed considerable success as an object recognition strategy in computer vision systems 

(for a review see Siddiqi & Pizer, 2008), although the precise approaches often differ in the 

details, as in the case of shock graphs (Sebastian & Kimia, 2005; Siddiqi et al., 1999), tree 

matching (Liu & Geiger, 1999), path similarity (Bai & Latecki, 2008), other geometric measures 

(Torsello & Hancock, 2004), and generative models (Trinh & Kimia, 2011; Zhu & Yuille, 1996). 

 The success of skeletal shape representations in computer vision has raised the 

possibility that human vision too has converged on this solution for representing and 

recognizing objects (Kimia, 2003).  And indeed, there are several studies suggesting that such 

skeletal representations exist in visual processing (e.g. Harrison & Feldman, 2009; Kovacs & 

Julesz, 1994; Kovacs et al., 1998).  For example, if many people are simply asked to tap a shape 

(presented on a tablet computer) once with their finger, wherever they wish, the collective 

patterns of taps conform to the medial axis, as depicted in Figures 2c and 2d (Firestone & Scholl, 

2014; see also Psotka, 1978).  And, beyond documenting their existence, other work has 

suggested that such skeletal representations might also influence certain types of higher-level 

subjective judgments — such as how aesthetically pleasing a shape (or even a real-world 

structure such as a rock garden) is (Palmer & Guidi, 2011; van Tonder et al., 2002), or what that 

shape should be called (Wilder et al., 2011). 

The current project seeks to build on this previous research, with a novel empirical focus 

on shape skeletons and perceived similarity.  Whereas previous work has explored possible 

theoretical connections between shape skeletons and similarity judgments, we aim to collect 

empirical data on this possibility.  Whereas quite a lot of previous work has explored the 
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possibility that similarity judgments could be explained by appeal to more general types of 

structural shape representations (e.g. geons, generalized cylinders, or part structure based on 

curvature minima), we aim to forge a novel empirical connection between perceived similarity 

and shape skeletons, per se.  And whereas past work has explored the possible psychological 

reality of shape skeletons in several ways, we aim to do so for the first time in the context of 

visual similarity. 

The Current Project: Shape Skeletons and Visual Similarity 

 Might shape skeletons actually influence our objective ability to correctly identify 

whether two shapes are the same or different?  In the present study, to find out, observers were 

repeatedly shown pairs of shapes — both simultaneously visible, side-by-side (see Figure 3).  

The two shapes in each pair, when they differed, could do so either in their underlying skeletal 

structure (without changing superficial features such as size, orientation, and internal angular 

separation) or in larger surface-level ways (without changing the overall skeletal organization).  

Observers simply had to determine on each trial whether the two shapes were identical or not 

(disregarding orientation) — and on trials where the shapes differed, their performance could 

be correlated with the actual degrees of skeletal similarity vs. superficial similarity.  If 

performance is predicted better by skeletal similarity than by superficial similarity, then this 

finding would be evidence that shape skeletons don’t merely exist in the mind but actually 

modulate objective visual performance. 

 

Experiment 1: Skeletal or Featural Similarity? 

 
 We first contrasted skeletal vs. featural similarity using ‘stick-figure’ shapes (see Figure 

4) that made skeletal structure (a) especially apparent, (b) unambiguous (in that every 

computational approach to shape skeletons would output the same skeleton for these shapes), 

and (c) dissociable from the shapes’ lower-level features.  These stick-figures thus intuitively 

resemble the skeletons themselves, but this in no way entailed that similarity perception would 
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be best explained by the underlying skeletal structure.  For one, we designed these shapes such 

that pixelwise distances were sometimes largest for skeletally similar shapes, such that a 

heuristic naïve to skeletal structure (e.g. Ullman, 1989) would predict an effect in the opposite 

direction.  Furthermore, as we explore in detail, these figures also differ in a host of lower-level 

ways (such as the different areas of their convex hulls) that are not confounded with skeletal 

structure and that could in principle influence similarity perception to an even greater extent. 

For these reason, we take care to demonstrate the explanatory power of shape skeletons over 

and above a variety of lower-level features that could account for similarity perception without 

making any reference to skeletal structure. 

Method 

 Subjects.  Ten naïve observers (with normal or corrected-to-normal acuity) from the Yale 

community completed individual 30-minute sessions in exchange for a small monetary 

payment.  This sample size was determined a priori based on previous experiments of this sort 

(e.g. Barenholtz et al., 2003), and was the same for both experiments reported here. 

 Apparatus.  The experiment was conducted with custom software written in Python 

with the PsychoPy libraries (Peirce, 2007).  The observers sat approximately 60 cm (without 

restraint) from a 36.4 x 27.3 cm CRT display with a 60 Hz refresh rate. 

Stimuli.  The stimulus set consisted of 400 families of six shapes each.  The shapes in 

each family were derived from a Parent shape comprised of four branches emanating from a 

central node (Figure 4).  Three of the branches — referred to below as ‘arms’ — had two 

segments connected at a joint.  The remaining branch — referred to below as the ‘stub’ — had 

only one segment.  Each segment of the Parent shape was 0.24 cm wide and capped by a 

semicircle with a diameter of 0.24 cm such that the segment terminated smoothly.  (The distance 

measurements that follow do not include the contribution of this cap, and are always computed 

from the center of any given node or joint.)  The length of each arm segment was a randomly 

chosen value between 1.52 and 3.03 cm.  The inner arm segments were separated by different 

randomly chosen angles (of at least 35°) for each Parent shape.  Each outer arm segment was 
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oriented at a randomly chosen angle (between 90° and 150°) relative to its inner arm segment.  

The stub was always 2.28 cm long and was inserted between the two arms with the largest gap 

between them, at a random orientation no less than 35° from either arm. 

To construct the other five members of each shape family from its Parent shape, we 

modified the Parent shape in five distinct ways, as depicted in Figure 5.  The first four of these 

changes were merely featural, and did not alter the shape’s skeletal structure: (1) In Single Arm 

changes, the outer segment of a single randomly-chosen arm pivoted by a randomly chosen 

angle between 45° and 90°.  (2) In Stub changes, the stub pivoted by a randomly chosen angle of 

at least 45°.  (3) In Arms changes, the outer segment of each arm pivoted by a different randomly 

chosen angle between 45° and 90°.  (4) In Arms+Stub changes, both the Stub changes and Arms 

changes were combined.  The final type of change manipulated the shape’s skeletal structure 

while minimizing perturbations to the shape’s other features: (5) In Skeletal changes, the base of 

the stub translated from the central node to a randomly chosen joint without changing the 

stub’s orientation.  The crucial aspect of these modifications is that although Skeletal changes 

are the only ones that reorganize the shape skeleton, these changes were actually quite small in 

terms of number of pixels that moved: indeed, many fewer pixels change in Skeletal 

modifications compared to Arms and Arms+Stub modifications — and a roughly equal number 

of pixels move compared to Single Arm and Stub modifications. 

Every modified shape in every family had the same aggregate arm length of 13.65 cm, 

each endpoint was no less than 0.73 cm away from its nearest neighbor, and no two branches 

intersected (except, of course, at the central node). 

Procedure.  As outlined in Figure 3, each trial began with a 250ms presentation of a 

black fixation cross (5.0 x 5.0 cm) centered on a white background.  Two shapes then appeared 

side-by-side on the screen (for a duration that was staircased for each subject as detailed below), 

with each shape’s central node centered in its half of the display.  One of the shapes was always 

a Parent, presented in a random orientation and on a randomly chosen side of the display.  Half 

of the trials were Same trials, on which the other shape was also that Parent shape, presented in 
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a new random orientation that differed by at least at 90° from the first shape.  The other half of 

the trials were Different trials, in which the second shape was drawn from one of the five types 

of shape modifications, and was also presented in a new random orientation that differed by at 

least at 90° from the first shape. 

On all trials, the shapes were replaced by masks (consisting of overlapping line 

segments designed to mimic the low-level features of the shapes and occupy roughly the same 

area; see Figure 3a), which remained present for 1s.  On each trial, subjects indicated by a 

keypress (that could be made as soon as the masks appeared) whether they thought the two 

shapes were identical or not (disregarding orientation).  After a 500ms pause, the next trial 

began. 

Subjects completed 400 trials (each based on a different Parent shape — with a different 

random assignment of Parent shapes to each trial computed for each subject), of which 200 were 

Same trials and 200 were Different trials.  The Different trials consisted of 40 trials of each of the 

five types of shape modifications (Single Arm, Stub, Arms, Arms+Stub, Skeletal).  The trials 

were divided into five 80-trial blocks, with a self-paced rest period between each block.  Each 

block contained 40 Same trials and 40 Different trials, with 8 trials each of the 5 different types 

of shape modifications — all presented in a different random order for each subject. 

Subjects first completed three practice trials followed by a staircasing procedure that 

manipulated stimulus presentation duration to bring accuracy to 70%.  (An initial presentation 

duration of 1500ms was reduced whenever subjects answered two consecutive trials correctly 

and was increased whenever they answered a single trial incorrectly.  The decrements and 

increments themselves decreased over the course of staircasing from 83ms to 33ms.  The 

staircasing procedure continued until the subject reached a minimum of 15 trials and three 

reversals.)  After the session, each subject completed a funneled debriefing procedure during 

which they were asked about their experiences and about any particular strategies that they had 

employed. 

Results and Discussion 
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 As can be seen in Figure 6a, changes to the shape’s underlying skeleton were easier to 

detect than any other kind of change.  These impressions were verified by the following 

analyses.  A repeated measures ANOVA revealed a main effect of shape modification type (F(4, 

36)=17.545, p<.001, η=.661), and planned comparisons confirmed that Skeletal differences 

(86.3%) were detected better than any of the surface-feature changes that did not change skeletal 

structure (vs. Single Arm: 51.8%, t(9)=6.23, p<.001; vs. Stub: 64.0%, t(9)=4.37, p=.002; vs. Arms: 

67.8%, t(9)=4.53, p=.001; vs. Arms+Stub: 75.5%, t(9)=4.12, p=.003).  This effect was also reliable 

nonparametrically: every single observer performed better on Skeletal trials compared to Single 

Arm and Stub trials (two-tailed binomial test, p=.002), and 9/10 (p=.021) and 8/10 (p=.109) 

subjects performed better on Skeletal trials than on Arms and Arms+Stub trials, respectively. 

The performance boost for Skeletal trials was not due to strategic differences such as 

giving a rushed response in the other Different trials (i.e. a speed-accuracy tradeoff); in fact, 

subjects also responded fastest on Skeletal trials.  Excluding response times greater than two 

standard deviations above the mean (1.1% of all trials), RTs on correct trials were significantly 

faster for Skeletal shapes (421ms) compared to Single Arm shapes (509ms, t(9)=3.56, p=.006), 

Stub shapes (506ms, t(9)=3.01, p=.015), and Arms shapes (530ms, t(9)=3.88, p=.004), and were 

numerically faster (and certainly not slower) compared to Arms+Stub shapes (457ms, t(9)=1.40, 

p=.195).  These same trends were again observed nonparametrically, with 9 out of 10 subjects 

responding fastest on Skeletal trials compared to all other Different trials (ps=.021).  Thus, 

beyond being detected most accurately, Skeletal changes may also be quicker and easier to 

detect. 

 We conducted three independent analyses to show that the performance boost for 

Skeletal changes could be attributed to skeletal structure, per se, over and above lower-level 

visual properties.  First, because of how the shapes were constructed, the simplest possible 

image-based analysis (i.e. degree of pixel-by-pixel overlap) will never find that Skeletal shapes 

differed the most from the Parent shapes.  In particular, One and Stub changes were roughly 

equivalent in pixelwise magnitude to Skeletal changes — and Arms and Arms+Stubs changes 
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were even more extreme than Skeletal changes.  This is because only one segment changes 

position during Skeletal changes, but three and four segments (and thus, three and four times 

the number of pixels) change their locations during Arms and Arms+Stub changes, respectively.  

Thus, on the basis of this intuitive and frequently used heuristic (e.g. Ullman, 1989), Skeletal 

shapes changed less than many other types of shapes in terms of such lower-level visual 

properties. 

Second, we considered an extensive list of specific lower-level properties that may have 

changed across shape modifications, to rule out the possibility that such properties might 

independently explain these results. We considered: (a) the smallest angle between any two 

intersecting branches, (b) the largest angle between any two intersecting branches, (c) the area 

bounded by the shape’s convex hull, (d) the shortest distance between any two branches’ 

terminal points, (e) the average distance between all branches’ terminal points, and (f) the 

standard deviation of the distances between all branches’ terminal points.  (These attributes 

exhaust all of the low-level features we considered to be possibly relevant in advance, along 

with every low-level feature suggested to us in debriefing by subjects who were asked to reflect 

on their strategies for discriminating the shapes.)  For each of these attributes, we calculated the 

absolute value of the difference between a given Different shape and its Parent shape.  These 

values are presented in Table 1.  For five of the six attributes, the stimuli were not confounded 

to begin with: Skeletal shapes had numerically smaller changes on average than one or more 

other shape types.  In fact, the Arms+Stub shape was, on average, more different from the Parent 

shape on each of these five unconfounded dimensions than was the Skeletal shape — and yet 

was harder to distinguish from the Parent shape than was the Skeletal shape. 

 The only attribute that was in fact confounded was the unsigned difference in the largest 

angle between any two intersecting branches — which was largest for Skeletal changes, on 

average.  However, this was not the case for every shape family.  So, to rule out this confound, 

we simply rank-ordered the shape families by this difference, and then progressively eliminated 

families until the confound disappeared.  For the remaining 203 shape families (that were not 
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confounded in this way — i.e. the largest ordered subset for which the difference in largest 

angle between any two intersecting branches was smaller on average for Skeletal changes than 

for Arms+Stub changes), Skeletal changes were still detected better than were all other types of 

changes (ps<.015).  Thus, this potential confound cannot explain our results. 

 Finally, in addition to these shape features, we also computed an independent measure 

of shape similarity using the Malsburg Gabor-jet model (Lades et al., 1993; Margalit et al., 2016), 

which has been shown to robustly track human discrimination performance for metric 

differences between shapes (Yue et al., 2012).  Inspired by the Gabor-like filtering of simple cells 

in V1 (Jones & Palmer, 1987), this model overlays sets (or “jets”) of 40 Gabor filters (5 scales × 8 

orientations) on each pixel of a 128×128 pixel image and calculates the convolution of the input 

image with each filter, storing both the magnitude and the phase of the filtered image. This 

yields two separate feature vectors, one for magnitude and one for phase, each with 655,360 

(128×128×40) values.  The difference between image pairs was computed in two ways (for 

magnitude and phase individually): Euclidean distance (which has been shown to correlate 

most highly with human discrimination performance; Yue et al., 2012) and cosine distance 

(which is invariant to the scaling of a vector).  The results are shown in Table 2.  As expected 

from the pixel-wise differences alone, distances in the 655,360-dimensional space relative to the 

Parent shape are comparable for Skeletal, One, and Stub shapes, and are far greater for Arms 

and Arms+Stub shapes.  Thus, even according to this fully pixelwise analysis (that makes no 

explicit reference to any specific shape properties), Skeletal shapes are objectively more similar 

than Arms and Arms+Stub shapes to their Parent shapes. 

 These results collectively suggest that visual dissimilarity is most accurately perceived 

for changes that influence a shape’s underlying skeletal structure — even when those changes 

are objectively smaller in terms of their lower-level properties, as measured both by geometric 

features of the images (e.g. distances and angles between various segments) and by features 

prioritized during lower-level stages in visual processing (i.e. the outputs of the Gabor-jet 

model). 
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Experiment 2: Skeletal Similarity in 3D Objects 

 
 The promise of shape skeletons is that they may serve as an effective format for real-

world object-representation, and accordingly a great deal of work in computer vision has been 

devoted to different ways of actually deriving skeletons from real-world 3D images (e.g. 

Borgefors et al., 1999; Sundar et al., 2003).  This challenge didn’t even exist for the stimuli in 

Experiment 1, however: by design, the shapes were line drawings, where each point on the 

shape was a point on the skeleton, and vice versa.  To see if the performance boost for skeletal 

changes observed in Experiment 1 depended on these constraints, we replicated the experiment 

with volumetric 3D objects of the sort depicted in Figure 3b and in Figure 5.  These objects still 

closely approximated their underlying skeletons, but (a) they depicted 3D structure from 

shading rather than being 2D line drawings, and (b) it was no longer the case that every point 

on the shape was a point on the skeleton, and vice versa.  This makes such stimuli somewhat 

unique in the psychological literature on skeletal shape representations, which have so often 

used (only) 2D images (e.g., Denisova et al., 2016; Firestone & Scholl, 2014; Kovacs & Julesz, 

1994; Wilder et al., 2011; cf. Hung et al., 2012; Lescroart & Biederman, 2012). 

 In addition, this experiment eliminated another possible confound from Experiment 1.  

Because Skeletal shapes moved a branch from the central node to a more peripheral joint, such 

shapes had only three segments intersecting at the central node, whereas every other type of 

shape continued to have four such segments.  Thus, an especially savvy subject could have 

succeeded at the task without actually engaging in comparison per se, simply by responding 

‘different’ any time a shape appeared that had three central segments.  We consider this 

possibility to be highly unlikely, given that (a) during debriefing, no subject reported even 

noticing these differences between the shapes (much less using this strategy to discriminate 

between them) and (b) with the exception of Single Arm changes, performance was reliably 

above chance, indicating that subjects were able to discriminate on the basis of other features. 
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Furthermore, such a strategy by its very nature exploits the shape’s skeletal organization and 

therefore is consistent with our main hypothesis. Nonetheless, we wanted to ensure that the 

task required active comparison, so the stimuli in Experiment 2 included two types of shape 

families: one that was structurally identical to the shape families from Experiment 1 (with four 

branches intersecting at the central node), and a new type in which the Parent shape started 

with three central segments and was then transformed by the Skeletal manipulation into a 

shape with four central segments.  Thus, the design of this experiment was identical except for 

the fact that the number of central segments in an object was never a reliable cue to the correct 

response — and so subjects had no choice but to actively compare the shapes. 

Method 

 This experiment was identical to Experiment 1, except as noted below. 

 Ten new naïve subjects participated (with this sample size chosen ahead of time to 

match that of Experiment 1).   

 The results of Experiment 1 were robust even in just the first 4 blocks, so we truncated 

the session to this length.  The stimulus set therefore consisted of 320 shape families, generated 

using the 3D rendering program Blender (see Figure 5).  The stimuli were rendered with 

realistic shading from a single point-light source located directly above the object’s central node.  

Because the 3D stimuli were presented as a 2D projection (and so subject to foreshortening), we 

give their dimensions here in arbitrary units and note that for branches that were orthogonal to 

the camera and centered at the central node (and so not subject to foreshortening), 100 units 

corresponded to 1.62 cm on the testing monitor.  Each segment of the Parent shape was 100 

units wide and capped by a hemisphere with a diameter of 100 units so that the segment 

terminated smoothly.  The length of each arm segment was a randomly chosen value between 

100 and 200 units, while the stub was always 150 units.  Every modified shape in every family 

had the same aggregate arm length of 900 units and no two branches intersected, except at the 

node(s).  The mask stimuli were similarly re-designed to more closely approximate the new 3D 

stimuli being used (as depicted in Figure 3b).  Just as in Experiment 1, it is worth emphasizing 
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that even though Skeletal changes reorganized the underlying shape skeletons, fewer pixels 

were actually altered during such changes compared to the other kinds of shape modifications. 

The stimuli were rendered in advance using a camera angle that was randomly chosen 

for each shape family (with at least a 90° difference between the Parent shape of a given family 

and all other shapes in that family) but then fixed across subjects (as in Figure 5).  The Blender 

camera itself was positioned 600 units above and 780 units in front of the central node of the 

shape, and was aimed directly at the central node.  The point light source sat immediately 

above the central node at a height of 1000 units. 

Half of the trials of every given type (and in every 80-trial block) involved a Parent 

shape with four central segments, and a Skeletal manipulation that resulted in three central 

segments (as in Experiment 1).  The other half involved a Parent shape with three central 

segments, and a Skeletal manipulation that resulted in four central segments — with all 

manipulations designed in a manner corresponding to those in Experiment 1. 

Results and Discussion 

 Just as in Experiment 1, changes to the shape’s underlying skeleton were easier to detect 

than any other kind of change.  A repeated measures ANOVA revealed a main effect of shape 

modification type (F(4, 36)=18.107, p<.001, η=.668), and planned comparisons confirmed that 

Skeletal differences (82.8%) were detected better than any of the surface-feature changes that 

did not change skeletal structure (vs. Single Arm: 54.1%, t(9)=6.74, p<.001; vs. Stub: 64.4%, 

t(9)=3.51, p=.007; vs. Arms: 62.5%, t(9)=5.17, p<.001; vs. Arms+Stub: 75.9%, t(9)=2.96, p=.016).  

Nonparametric data showed similar trends, as every single subject performed better on Skeletal 

trials compared to Single Arm and Arms trials (two-tailed binomial test, p=.002), and 9/10 

(p=.021) and 8/10 (p=.109) subjects performed better on Skeletal trials than on Stub and 

Arms+Stub trials, respectively. 

 Also in agreement with Experiment 1, these results cannot be explained by a speed-

accuracy tradeoff.  After excluding RTs that were greater than two standard deviations above 

the mean, subjects were numerically faster (and thus certainly not slower) to respond correctly 
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on Skeletal trials (823ms) than on all other types of trials (Single Arm: 922ms; Stub: 887ms; 

Arms: 906ms; Arms+Stub: 869ms).   

 We also tested and ruled out the same set of possible confounds as in Experiment 1 — 

keeping in mind that the stimuli were again constructed such that Arms and Arms+Stub 

changes differed more from their Parent shapes in terms of pixelwise overlap than did all other 

sorts of changes, including Skeletal changes.  As detailed in Table 1, most of the six features we 

tested were again not confounded in the first place.  However, two features did differ most for 

Skeletal changes: (b) the largest angle between any two intersecting branches, and (e) the 

average distance between all branches’ terminal points.  An analysis identical to that described 

in Experiment 1 ruled out both of these confounds: considering the largest ordered subset of 

families in which these confounds simply weren’t present on average (202 of 320 families for 

largest angle; 313 of 320 families for average distance), Skeletal changes were still easier to 

notice than all other changes (ps<.023).  Therefore, the performance boost observed with 

Skeletal changes is influenced by shape skeletons per se, rather than any of the lower-level 

features that may be correlated with changes to a skeleton. 

Finally, we performed a similar analysis with the Gabor-jet model (as detailed in 

Experiment 1), and found that Skeletal changes were no greater on this pixelwise metric than 

were the other shape changes (see Table 2).  (And even this is surely a conservative estimate of 

pixelwise shape differences because the 3D images could not be brought into maximal 

alignment within the image plane — so they varied not only metrically but also in terms of their 

viewpoints.  If they had been aligned, they would have produced a pattern much more similar 

to that of Experiment 1.)  

 

General Discussion 

 
This project was motivated by a simple but profound question about visual experience: 

how do we perceive that two objects are similar or different?  And this invites another 
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foundational question from the perspective of cognitive science: what is the underlying 

representational format that makes such comparisons between objects possible?  Whereas 

decades of research have proposed shape skeletons as a useful answer to this question in the 

context of computer vision, the current results provide the first direct evidence that human 

perception of similarity is likewise influenced by shape skeletons.  Thus, beyond existing in 

human vision in the first place (e.g. Firestone & Scholl, 2014; Kovacs & Julesz, 1994) and 

perhaps guiding subjective judgments (e.g. van Tonder et al., 2002; Wilder et al., 2011), shape 

skeletons actually matter for objective visual performance. 

 Across two experiments, we demonstrated a robust advantage in the ability to 

discriminate shapes (both 2D line drawings and 3D volumes) as different when they had 

different skeletal structures — even when the structurally similar shapes differed to a greater 

degree in many types of lower-level attributes.  Moreover, this performance boost occurred 

while the objects were simultaneously visible, implying that shape skeletons influence perceived 

similarity per se, rather than only influencing how shapes are remembered after the fact. That 

said, we expect shape skeletons to modulate object memory in a similar fashion, to allow for 

assessments of object identity across time as well as space. 

Future work could explore the power and generalizability of this result in at least two 

ways.  First, given that the stimuli in the present studies were all (2D or 3D) stick figures, it will 

be important to determine the degree to which skeletal structure also influences objective 

similarity perception in stimuli whose shape skeletons are less similar to their visible contours.  

The fact that medial axis representations have been found to underlie the perception of many 

other types of shapes — e.g. polygons (Firestone & Scholl, 2014), ellipses (Kovacs & Julesz, 1994), 

cardioids (Kovacs et al., 1998), and even silhouettes of plants and animals (Wilder et al., 2011) — 

provides some reason for suspecting that objective similarity judgments might similarly be 

influenced by skeletal structure in such cases, but this needs to be empirically tested.  Second, 

the present work demonstrates an influence of shape skeletons on the perception of similarity, 

but of course we do not suggest that this is the only such factor (or even the principal one).  As 
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such, it might prove interesting in future work to directly compare the influence of skeletal 

structure with many other sorts of factors — e.g. closure (e.g. Elder & Zucker, 1993; Kovacs & 

Julesz, 1993), connectedness (e.g. Palmer & Rock, 1994; Saiki & Hummel, 1998), and topology 

(e.g. Chen, 1982, 2005).  (And of course, unconfounding these factors would also require a wider 

array of shape types.)  Comparisons to these others factors might help reveal not only whether 

skeletal structure influences the perception of similarity (as the current study demonstrates), but 

also how central it is within a broader hierarchy of visual features.  

Parts, Skeletons, and Similarity 

 One reason why shape skeletons have captivated some human vision researchers is that 

they seem so counterintuitive.  (In fact, this counterintuitiveness can be confirmed and 

measured directly; see Firestone & Scholl, 2014, Experiment 8.)  As such, it may seem surprising 

that the familiar experience of visual similarity should be influenced by such an abstract 

geometric construct.  But shape skeletons in fact respect many subjective aspects of perceived 

similarity — most notably the sense in which two objects that share an underlying structure can 

and do look similar even when their superficial shapes are very different (as in Figure 1).  

Frequently, objects in the world — both biological and man-made — do have real underlying 

structures that permit certain kinds of changes (such as articulations of limbs) but forbid others 

(such as translocation and/or reattachment of parts), and so perhaps it should not be such a 

surprise after all that such structure plays a role in human vision. 

Indeed, this same insight has motivated other investigations into how the visual system 

represents parts of objects, even without explicitly invoking shape skeletons.  Changes to the 

number of parts a shape has are readily detected (e.g. Barenholtz et al., 2003; Bertamini & 

Farrant, 2005), and shapes whose parts are articulated in ways that obey these part boundaries 

are explicitly judged to be more similar-looking (Barenholtz & Tarr, 2008).  However, shape 

skeletons have been proposed as a better way to recover part structure, both because they can 

be used to represent a shape’s structure hierarchically (Feldman & Singh, 2006) and because the 

transformations that are possible for an object also tend to be those that preserve patterns of 



Skeletal Similarity p. 19 

	

skeletal connectivity.  Indeed, representations of skeletal structure have recently been invoked 

to explain our sensitivity to certain part changes, such as articulations (Denisova et al., 2016); 

however, this study tested only changes to a particular part (such as bending, extending, or 

sliding a given ‘branch’), and not to a shape’s overall skeletal organization.  By contrast, the 

present studies manipulated the overall connectivity of the shapes while not changing the brute 

physical appearance of any of the individual parts — and while carefully controlling for 

confounds (such as the minimum and average distances between parts’ endpoints) that may 

otherwise be present in such changes (cf. Keane et al., 2003).  (In fact, Denisova et al., 2016, 

found the lowest sensitivity for ‘sliding’ a part along the branch to which it is connected.  This 

result amplifies the strength of the present findings, which suggest that part-translations go 

from being the least detectable kind of change to the most detectable kind of change the moment 

such a translation alters the shape’s skeletal organization.) 

 Overall, the present studies are the first to implicate skeletal organization per se in 

perceived similarity, beyond lower-level surface features, and beyond part-structure.  Shape 

skeletons thus not only influence subjective impressions of our environment but also alter our 

objective ability to compare and recognize objects in the world. 
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Tables 
 

Table 1.  Lower-level features that could have been confounded with changes in skeletal 
structure.  Each entry is the absolute value of the difference between a Parent shape and the 
relevant Different shape for that feature, averaged across the entire stimulus set.  The features 
that we computed exhausted all of those we identified a priori as being possibly relevant, 
combined with all those mentioned by the subjects during debriefing: (a) the smallest angle 
between any two intersecting branches, (b) the largest angle between any two intersecting 
branches, (c) the area bounded by the shape’s convex hull, (d) the shortest distance between any 
two branches’ terminal points, (e) the average distance between all branches’ terminal points, 
and (f) the standard deviation of the distances between all branches’ terminal points. (u = 
Blender units.  See text for details.) 
 
 
   
  
 Comparison Feature 
    
  
 Modification (a) Smallest (b) Largest (c) Convex (d) Shortest (e) Average (f) SD of 
 Type Angle Angle Hull Area Distance Distance Distance 
    

 
Experiment 1 
 
Single Arm 0° 1.615° 2.700cm2 0.050cm 0.087cm 0.090cm 

Stub 13.565° 2.33° 1.754cm2 0.127cm 0.056cm 0.065cm 

Arms 0° 4.823° 3.723cm2 0.094cm 0.158cm 0.141cm 

Arms+Stub 13.565° 6.795° 3.650cm2 0.162cm 0.163cm 0.151cm 

Skeletal 11.078° 16.58° 2.209cm2 0.096cm 0.142cm 0.084cm 

   

 
Experiment 2 
 
Single Arm 0° 1.05° 10852u2 0.117u 4.751u 4.588u 

Stub 18.65° 5.125° 10356u2 1.401u 5.833u 6.473u 

Arms 0.006° 3.166° 14618u2 0.201u 7.607u 6.919u 

Arms+Stub 18.67° 7.666° 16303u2 1.530u 10.06u 9.220u 

Skeletal 17.39° 16.04° 12109u2 0.920u 10.38u 5.089u 
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Table 2. Psychophysical distances according to the Gabor-jet model (Lades et al., 1993; Margalit 
et al., 2016).  Cosine distance is measured as one minus the cosine of the included angle between 
vectors, such that greater values indicate greater differences.  As expected, the shapes that are 
more different on a pixel-by-pixel basis (i.e. Arms and Arms+Stub) are also more different 
according to this model. (au = arbitrary units, rad=radians.  See text for details.) 
 
 
_______________________________________________________________________________________________________________________ 
 
                                                                            Gabor-jet Distance 
  ______________________________________________________________________________________  
  
 Modification                       Euclidean                               Cosine  
 Type  Magnitude  Phase  Magnitude Phase   
  ______________________________________________________________________________________ 

 
Experiment 1 
 
Single Arm 7137au 1219rad 0.1285 0.0866  

Stub 6492au 1070rad 0.1052 0.0669  

Arms 12420au 1873rad 0.3846 0.2033  

Arms+Stub 13935au 2004rad 0.4843 0.2326  

Skeletal 6287au 1142rad 0.0987 0.0760  

_____________________________________________________________________________________________________________________________ 
 
 
Experiment 2 
 
Single Arm 3034au 2074rad 0.3788 0.2494  

Stub 3095au 2074rad 0.3992 0.2494  

Arms 3022au 2076rad 0.3777 0.2498  

Arms+Stub 3067au 2073rad 0.3897 0.2491  

Skeletal 3022au 2075rad 0.3788 0.2495  

_____________________________________________________________________________________________________________________________ 
 



Skeletal Similarity p. 28 

	

Figure Captions 

 
Figure 1.  (A) Everyday objects, such as the human hand, can assume many poses, each with a 

very different global shape.  (B) Despite such differences in global shape, the internal structure 

of the hand remains the same across transformations, and the organization of the shape skeleton 

reflects this invariance (Feldman & Singh, 2006; skeletons computed using Jacob Feldman and 

Manish Singh’s “ShapeToolbox 1.0”).  

 

Figure 2.  The medial axis, depicted for (A) a triangle, and (B) a rectangle.  (C and D) When 

subjects were asked to tap these shapes once, anywhere they chose, the aggregated touches 

clustered around the medial axes, revealing the psychological reality of shape skeletons 

(Firestone & Scholl, 2014, Experiments 1 and 2). 

 

Figure 3.  Schematic illustrations of the same/different tasks in (A) Experiment 1, and (B) 

Experiment 2.  In both experiments, each trial began with a 250ms presentation of a black 

fixation cross centered on a white background.  Two shapes from the same ‘family’ then 

appeared side by side on the screen for the staircased duration, followed by masks, which 

appeared for 1s.  Subjects indicated with a keypress whether they thought the two shapes were 

the same or different.  Following a 500ms pause, the next trial began.  

 

Figure 4.  Schematic illustration of stimuli used in Experiment 1.  Values displayed for one 

branch apply also to every corresponding branch. 

 

Figure 5.  Sample stimuli used in Experiments 1 and 2.  Each row represents a different shape 

family.  See text for details. 
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Figure 6.  Performance on the same/different tasks in (A) Experiment 1, and (B) Experiment 2.  

In both experiments, performance on Skeletal changes differed from performance on every 

other kind of change (ps<.016).  Error bars depict ±1 SEM.  
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