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Abstract	

	 A	ubiquitous	facet	of	human	life,	pedagogy	is	crucial	to	the	success	and	growth	of	

our	species	(Tomasello,	2009).	Despite	its	significance,	humans	struggle	with	pedagogy	

well	into	adulthood.	Prior	work	has	begun	investigating	situations	where	teaching	breaks	

down,	in	order	to	analyze	the	sources	of	teachers’	failures.	In	a	recent	set	of	experiments,	

Aboody,	Velez-Ginorio,	Santos	&	Jara-Ettinger	(under	review)	found	that	teachers	struggle	

because	they	fail	to	understand	the	kinds	of	hypotheses	naïve	learners	consider	likely.	

Therefore,	teachers	did	not	provide	enough	evidence	for	naïve	participants	to	successfully	

learn	from.	This	study	has	one	important	limitation,	however:	in	contrast	to	other	recent	

pedagogy	research,	data	were	collected	entirely	online.	It	is	possible	that	the	less	

naturalistic	setting	(or	lack	of	teacher	motivation)	caused	teachers	to	perform	poorly.	In	

the	current	work,	we	replicate	Aboody	et	al.’s	initial	experiment	with	a	lab-based	sample	of	

teachers.	We	successfully	replicate	the	results	of	Aboody	et	al.	(under	review),	therefore	

demonstrating	that	teachers	failures	in	the	task	cannot	be	explained	by	the	sample	or	

online	methods	utilized.	
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Introduction	

	 Humans	spend	a	considerable	amount	of	time	learning	from	each	other,	and	this	has	

been	critical	to	our	survival	and	success.	While	we	share	many	traits	with	our	closest	

evolutionary	relatives,	we	are	by	far	the	most	prolific	and	effective	social	learners	

(Sherwood	et.	al.,	2008;	Tomasello,	2009).	This	ability	may	be	one	reason	our	species	has	

been	so	successful	(Bandura,	1977):	Despite	minimal	changes	to	our	biological	evolution,	

our	ability	to	relate	to	other	minds	in	complex	ways	has	enabled	us	to	make	significant	

progress	over	the	past	several	millennia	(Sherwood	et.	al.,	2008;	Tomasello,	2009).	We	are	

able	to	“ratchet”	our	knowledge	over	generations	(Tomasello,	2009),	devoting	less	time	to	

rediscovering	ideas,	and	more	time	building	on	top	of	previous	knowledge.	

Teaching	is	a	fairly	unique	human	trait,	although	several	other	species	have	also	

been	observed	engaging	in	“teaching-like”	activities	(Skerry,	Lambert,	Powell	&	McAuliffe,	

2013).	It	is	possible	that	we	are	such	prolific	teachers	and	social	learners	because	of	a	

sophisticated	ability	to	reason	about	other	people’s	knowledge	and	beliefs,	called	Theory	of	

Mind	(Ghrear,	Birch,	and	Bernstein,	2016).	Theory	of	Mind	allows	us	to	"reason	about	our	

own	and	others'	mental	states"	(Ghrear,	Birch,	and	Bernstein,	2016),	and	therefore	it	may	

facilitate	our	social	learning	and	teaching	abilities.		

Although	young	children	are	effective	social	learners	(Gweon,	H.,	Shafto,	P.,	&	Schulz,	

L.,	2014;	Bridgers,	S.,	Jara-Ettinger,	J.,	&	Gweon,	H.,	2016)	and	teachers	(Shafto,	Goodman	&	

Griffiths,	2014;	Rhodes,	gelman	&	brickman,	2010),	even	adults	struggle	to	teach	effectively	

in	some	situations	(Chi,	Siler,	Jeong,	Yamauchi	&	Hausmann,	2001;	Chi,	Siler	&	Jeong,	2004),	

especially	in	unconstrained,	naturalistic	interactions	(Chi,	Siler,	Jeong,	Yamauchi	&	

Hausmann	2001;	Chi,	Siler	&	Jeong,	2004).		
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Why	do	adults	teach	well	in	some	tasks,	but	struggle	in	others?	In	order	to	reconcile	

these	findings,	Aboody	et.	al.	(under	review)	investigated	why	teaching	sometimes	breaks	

down.	They	proposed	three	possible	hypotheses	that	could	account	for	participants’	

struggles	in	some	tasks,	and	success	in	others.	The	first	possibility	is	that	the	naturalistic	

tasks	typically	used	to	measure	how	well	we	teach	are	too	complex.	These	tasks	may	

present	too	many	teaching	options,	making	it	difficult	for	teachers	to	decide	what	to	teach.	

A	second	possibility	is	that	teachers	have	difficulty	representing	specific	hypotheses	that	

learners	would	consider	plausible.	As	tasks	become	more	complex,	it	becomes	more	

challenging	to	conceptualize	what	are	the	most	plausible	ideas	from	a	naive	perspective.	

Finally,	the	third	possibility	was	that	both	of	these	difficulties	affect	how	we	teach	in	

complicated	tasks.	

Ultimately,	Aboody	et.	al.	(under	review)	found	that	while	participants	in	teaching	

tasks	made	rational	choices	in	attempts	to	communicate	information,	they	failed	to	infer	

the	breadth	of	hypotheses	learners	considered,	and	how	much	data	learners	would	require	

to	reject	these	incorrect	hypotheses.	Put	differently,	teachers	overestimated	what	learners	

knew,	and	therefore	didn’t	provide	enough	information.	This	research,	however,	was	

conducted	online,	on	Amazon	Mechanical	Turk.	While	it	is	possible	that	teachers	struggled	

due	to	legitimate	reasons,	it	is	also	possible	that	these	online	workers	were	simply	

distracted	or	unmotivated,	and	struggled	due	to	these	factors.	Or,	perhaps	online	teaching	

tasks	are	simply	too	artificial,	and	therefore	do	not	accurately	reveal	adults’	capacities.	If	

any	of	these	possibilities	are	true,	Aboody	et	al.’s	original	results	may	not	generalize	to	a	

more	naturalistic	version	of	the	task,	conducted	with	a	motivated,	undistracted	in-lab	
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sample	of	participants.	In	our	first	experiment,	we	test	these	possibilities	by	replicating	

Aboody	et	al.’s	first	experiment	with	an	in-lab	sample	of	learners.		

	

Experiment	

	 This	experiment	consisted	of	a	two-part,	between-subjects	design.	First,	participants	

took	part	in	a	teaching	task.	These	participants	learned	how	to	activate	a	new	machine,	and	

then	selected	examples	to	teach	naïve	learners.	Next,	these	examples	were	shown	to	naïve	

learners,	and	their	understanding	of	the	machine	was	assessed.		

Participants	in	the	learning	task	were	first	taught	how	the	machine	worked	in	

general	terms	(e.g.,	that	when	it	activated,	it	played	music),	without	being	told	specifically	

what	would	activate	the	machine.	Participants	were	then	shown	a	set	of	examples	

(generated	by	one	of	the	teachers),	and	asked	to	deduce	what	rule	activated	the	machine.	

As	in	the	original	study,	teachers'	performance	was	derived	from	the	success	rate	of	the	

participant	learners	that	were	assigned	to	them.	If	a	teacher’s	learners	failed	to	learn	how	

the	machine	worked,	and	thus	performed	poorly,	that	teacher	was	categorized	as	having	

performed	poorly	(and	vice	versa).	Aboody	et	al	(under	review)	found	that	teachers	did	

not	perform	optimally	(e.g.,	many	learners	struggled	to	figure	out	how	the	machine	worked	

from	teachers’	demonstrations).		

It	is	possible	that	learners	in	the	original	task	struggled	only	because	the	teachers	

recruited	from	Amazon	Mechanical	Turk	were	distracted	when	producing	their	examples,	

or	unmotivated	to	teach.	Or,	perhaps	the	task	was	so	artificial	that	participants	couldn’t	

teach	effectively.	In	the	current	experiment,	we	test	this	possibility	by	utilizing	an	in-lab	

sample	of	participants	for	our	teachers,	and	making	our	task	more	naturalistic.	If	the	
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original	findings	replicate,	this	will	provide	evidence	that	the	original	effect	observed	is	

indeed	robust.		

Methods	

Participants		

Adult	participants	(n	=	20)	were	recruited	from	the	Spring	2018	Yale	University	

Introduction	to	Psychology	subject	pool	to	take	part	in	the	teaching	task.	A	second	group	of	

participants	(n	=	200;	mean	age	=	35.46	years;	range	=	19–68	years)	were	recruited	from	

Amazon's	Mechanical	Turk	platform	to	take	part	in	the	learner	task.	

	
Stimuli		

	 Stimuli	consisted	of	five	1.5	x1.5x1.5	inch	(3.38	inch3)	blocks	painted	red,	orange,	

blue,	purple,	and	green.	Each	block	was	labeled	with	a	black	letter	on	one	face:	A,	B,	C,	D,	

and	E,	respectively.	In	addition,	a	music	machine	was	constructed	from	a	4"	by	6"	by	10"	

box.	The	machine	activated	(played	music)	only	when	two	specific	blocks	(orange	“B”	and	

green	“E”)	were	on	top	of	the	machine	together.	Neither	the	order	of	the	blocks,	nor	the	

presence	or	absence	of	other	blocks	affected	whether	the	machine	activated.	Although	

participants	were	quite	convinced	that	the	blocks	caused	the	machine	to	activate,	the	

experimenter	actually	surreptitiously	activated	the	machine	when	demonstrating	its	

function	to	participants.1	

                                            
1	Note:	the	machine	used	in	the	previous	study	conducted	online	used	light	to	

indicate	the	machine	being	activated.	The	present	study	uses	music	as	a	more	salient	

indication	of	activation	in	an	in-person	setting.		
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Procedure	

	
Teacher	condition.		

First,	adult	participants	learned	about	a	new	machine	called	a	“music	machine”.	

They	were	told	that	the	music	machine	activates	when	certain	blocks	are	placed	on	top,	and	

were	introduced	to	five	blocks	(lettered	A-E).	Participants	were	told	that	the	machine	

activated	only	when	both	the	orange	block	(B)	and	the	green	block	(E)	were	placed	on	top.	

These	two	blocks	caused	the	machine	to	activate	regardless	of	their	order,	or	the	presence	

of	other	blocks.	Participants	were	shown	two	examples	of	these	blocks	activating	the	

machine	(one	example	containing	just	blocks	B	and	E,	and	one	example	containing	all	the	

blocks,	in	a	mixed-up	order).	Participants’	understanding	was	then	assessed	in	several	

different	ways.	Participants	were	first	asked	to	indicate	which	blocks	activated	the	machine	

(multiple	choice).	Then	they	were	asked	to	indicate	whether	the	machine	was	on	or	off	in	3	

separate	depictions	of	the	machine	with	blocks	on	top	of	it.	Any	participants	who	failed	any	

of	these	four	questions	were	automatically	excluded	from	the	study.		

Once	it	was	clear	that	participants	understood	how	the	machine	worked,	teachers	

were	then	asked	to	communicate	this	information	to	naïve	learners.	Teachers	could	select	

examples	of	blocks	to	demonstrate	on	top	of	the	machine.	Participants	understood	that	

learners	would	see	whether	or	not	each	demonstration	activated	the	machine.	Teachers	

were	asked	to	provide	between	a	minimum	of	three	to	a	maximum	of	twenty	unique	

examples.	We	assessed	teachers’	understanding	of	their	task,	and	of	the	learner’s	

knowledge	state;	teachers	who	answered	these	check	questions	wrong	were	corrected.	
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Next,	the	experimenter	told	participants	he	was	turning	the	machine	off	(so	they	did	

not	receive	feedback	from	the	machine	for	each	example	they	gave).	Then,	participants	

were	able	to	begin	providing	examples,	by	placing	block(s)	on	top	of	the	machine.	

Participants	were	asked	not	to	speak	or	explain	themselves	during	the	process,	but	were	

told	that	they	would	have	a	chance	to	explain	each	example	later	on.	The	experimenter	

indicated	when	they	took	a	photograph	of	the	demonstration	by	saying,	“Okay,”	after	which	

the	teacher	would	either	provide	another	example	or	alert	the	experimenter	that	they	were	

satisfied	with	the	examples	they	had	provided.	

After	participants	indicated	they	were	done	providing	examples,	they	responded	to	

several	post-test	questions.	They	were	asked	to	rate	on	a	Likert	scale	how	confident	they	

were	in	their	demonstrations	being	sufficient	to	teaching	a	naïve	learner.	Then	they	were	

asked	whether	there	were	examples	they	wanted	to	provide	but	were	unable	to	and	if	they	

felt	they	had	provided	any	extra	examples.	Finally,	teachers	were	asked	to	explain	why	they	

had	stopped	providing	examples.	 	

	

Learner	condition.		

	 Participants	in	the	learner	condition	were	introduced	to	the	music	machine	and	the	

blocks.	They	were	taught	only	what	the	machine	looked	like	when	it	activated	(when	the	

machine	activated,	a	music	symbol	appeared	above	the	top	left	corner.	See	Figure	1).	Next,	

learners	viewed	a	teacher’s	demonstrations.	10	learners	were	assigned	to	view	each	

teacher’s	examples.	Learners	viewed	their	teacher’s	examples	in	the	order	that	the	teacher	

provided	them	(see	Supplemental	Materials).	Next,	their	understanding	of	the	machine	was	

assessed.	First,	learners	were	asked	to	explain	qualitatively	how	the	machine	worked.	
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Then,	we	showed	learners	every	possible	way	to	combine	the	five	blocks	(5	blocks	=	31	

possible	combinations).	For	each	combination,	learners	had	to	identify	whether	the	

machine	was	on,	or	off.	This	provided	a	thorough	picture	of	what	learners	thought,	and	

how	well	they	understood	the	rule.		

	

Figure	1.	[Learners	were	taught	what	the	machine	looked	like	when	it	was	turned	on	or	

turned	off	with	the	images	above.	When	the	machine	was	on	it	had	an	image	of	music	notes	

on	the	upper	left	side	and	when	it	was	off	it	did	not.	To	see	how	this	looked	on	images	of	

teacher	demonstrations,	see	3a-3b	in	Supplemental	Materials]	

	

Results	

Participants	in	the	teacher	condition	provided	an	average	of	7.2	examples	(range	=	

4–15;	SD	=	3.4).	After	choosing	these	examples,	teachers	were	quite	confident	they	would	

effectively	teach	a	naïve	learner	about	the	machine,	reporting	an	average	confidence	rating	

of	5.2	on	a	7-point	scale	(range	=	2–7;	SD	=	1.3).	These	results	are	comparable	to	the	

results	of	Aboody	et.	al.	(under	review)	which	found	that	teachers	provide	an	average	of	

8.2	examples	(range	=	3-20;	SD=4.4)	and	reported	a	confidence	rating	of	6.05	on	a	7-point	

scale	(range	=	5-7;	SD	=	0.76).	
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Although	teachers	were	quite	confident	in	the	quality	of	their	demonstrations,	this	

did	not	translate	into	effective	learning	outcomes.	A	mere	26.5%	of	learners	(n=	53)	

performed	at	or	near	ceiling	in	the	quantitative	task	–	in	contrast,	in	the	original	sample,	

half	of	learners	performed	at	or	near	ceiling	(50%,	n=100).	Although	many	participants	

struggled	to	understand	exactly	how	the	machine	worked,	overall	participants	still	

performed	above	chance	on	our	quantitative	measure	(M	=	72.2%,	t(199)	=	13.7,	p	<	

.001).	Even	when	participants	who	performed	perfectly	are	excluded	from	these	analyses,	

participants	still	performed	above	chance	(M	=	63%,	t(150)	=	8.5,	p	<	.001).		

Perhaps	learners	struggled,	not	because	of	teachers’	abilities,	but	because	they	just	

didn’t	attend	to	the	task.	In	this	case,	we	would	expect	all	learners	to	perform	equally	

poorly,	regardless	of	the	teacher	whose	examples	they	learned	from.	However,	this	is	not	

the	case:	the	teacher	learners	were	assigned	to	could	predict	learners’	quantitative	

performance	(Monte	Carlo	permutation	test,	p	=	.004,	10,000	samples).	In	fact,	this	

relationship	is	even	stronger	than	that	in	the	original	paper	(Monte	Carlo	permutation	test,	

p	=	.03,	10,000	samples).	This	provides	evidence	that	our	results	cannot	be	explained	

simply	by	assuming	that	a	randomly	distributed	subset	of	participants	did	not	attend	to	the	

task.		
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Figure	2a.	In	this	figure,	we	plot	learners’	overall	performance	on	the	quantitative	test	

questions,	as	a	proportion	of	the	number	of	correct	answers	each	learner	gave.	

Performance	was	above	chance	(indicated	by	the	red	line).		The	x-axis	was	extended	to	

avoid	overplotting	and	has	no	relevant	value.	Figure	2b.	In	this	figure,	the	bars	represent	

the	mean	performance	of	each	group	of	learners	(e.g.,	the	10	learners	assigned	to	each	

teacher),	arranged	from	highest	to	lowest	mean	performance.	The	red	lines	show	the	range	

of	learner	performance,	and	the	dots	plot	learners’	actual	performance	(the	darker	the	

points,	the	more	learners	they	represent).		

	

Discussion	

While	common,	teaching	is	a	difficult	task	to	accomplish	effectively.	This	study	

found	that	only	a	quarter	of	participants	performed	close	to	perfectly,	but	most	did	not.	

Strong	learner	performance	was	also	not	distributed	evenly	among	teachers	as	some	

teachers	were	able	to	predict	how	well	learners	would	do,	which	we	show	through	our	

Monte	Carlo	permutation	test.	This	demonstrated	that	learners’	difficulties	went	beyond	
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challenges	attending	the	task	but	with	the	teacher	they	were	assigned.	Thus,	teacher	failed	

to	generate	sufficient	examples	which	is	consistent	with	Aboody	et.	al.	(under	review).	

Aboody	et	al.	(under	review)	proposed	that	teachers	either	struggled	deciding	what	

information	would	be	most	helpful	to	share	when	given	many	choices	or	they	would	choose	

information	that	did	not	accurately	represent	learners’	conceived	possibilities.	In	a	two-

part	study,	they	ultimately	found	evidence	for	the	latter,	as	leaners	predicted	how	to	

activate	the	machine	more	accurately	when	their	hypothesis	spaces	were	constrained	than	

when	they	were	not.	Teachers	did	not	fail	to	give	informative	data,	but	failed	to	consider	a	

wide	enough	breadth	of	hypotheses	that	learners	might	consider.	

A	more	naturalistic	setting	allowed	teachers	to	consider	more	possible	

considerations	for	how	the	machine	worked.	In	fact,	some	teachers	in	lab	provided	

examples	that	online	participants	could	not	produce.	For	example,	some	teachers	turned	

blocks	around	to	hide	the	letter	to	indicate	that	the	blocks’	letters	did	not	matter	(Figures	

4a-4c).	Other	participants	used	block	position	to	emphasize	the	blocks	that	did	activate	the	

machine	(see	Supplemental).	However,	although	some	participants	did	consider	a	broad	

range	of	potential	hypotheses,	these	participants	do	not	appear	to	have	provided	enough	

evidence	to	clarify	for	learners	what	these	examples	were	intended	to	communicate.	In	

fact,	these	examples	sometimes	misled	learners.		

	 “I	could	not	figure	out	what	made	the	machine	turn	on.		I	was	paying	attention	to	the	

examples	but	they	seemed	to	follow	no	rhyme	or	reason,”	commented	one	learner.	“The	

way	for	it	to	turn	on	is	to	have	block	E	and	block	B	next	to	each	other.	It	does	not	matter	

which	is	on	what	side,	but	they	must	be	next	to	each	other,”	explained	another	learner,	

when	prompted	to	explain	how	the	machine	worked.	This	learner	almost	understood	how	
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the	machine	worked	–	but	misunderstood	the	role	that	block	orientation	played.	Although	

teachers	clearly	anticipated	certain	non-obvious	hypotheses	learners	might	entertain	

(although	failing	to	anticipate	others),	teachers	also	did	not	seem	to	provide	enough	data	to	

truly	make	their	point.	For	example,	turning	the	blocks	around	(to	demonstrate	that	the	

letters	don’t	matter)	may	rule	out	certain	letter-based	hypotheses	–	but	may	introduce	or	

support	hypotheses	about	block	orientation	mattering.			

The	in-person	replication	in	this	study	was	designed	to	rule	out	several	important	

potential	confounds	with	the	original	study.	The	first	difference	is	the	origin	of	the	subject	

pool.	In	Aboody	et.	al.	(under	review),	teacher	participants	came	from	a	group	of	Amazon	

Mechanical	Turk	workers	around	the	United	States.	The	teachers	in	this	in-person	

replication	all	came	from	Yale	University’s	2018	Introduction	to	Psychology	course.	In	the	

in-lab	replication,	experimenters	had	much	greater	control	over	participants’	environment.	

Experimenters	could	ensure	that	the	students	were	undistracted,	and	focused	on	the	task.	

Furthermore,	students	in	the	subject	pool	are	generally	quite	motivated	to	help	their	fellow	

students,	and	so	may	have	been	more	motivated	than	online	participants.	Additionally,	

these	two	groups	may	have	had	different	levels	of	understanding	about	teaching	strategies	

in	general.	All	these	things	considered,	the	results	from	this	study	replicated	those	of	

Aboody	et.	al.	(under	review),	suggesting	that	the	findings	are	consistent	across	most	

backgrounds.		

	 Another	difference	between	the	two	designs	was	how	teachers	learned	the	rule.	

This	difference	is	the	independent	variable	that	was	changed	between	Aboody	et.	al.	(under	

review)	and	the	present	study.	Our	goal	was	to	make	the	task	more	naturalistic	and	so	

receiving	the	instructions	in	person	versus	digitally	was	a	part	of	the	design.	As	mentioned	
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above,	the	more	naturalistic	setting	allowed	the	in-person	subject	pool	greater	flexibility.	

Teachers	in	this	study	had	the	opportunity	to	ask	clarifying	questions	during	the	task,	

which	may	have	contributed	to	their	understanding	and	eventually	their	example	choices.	

However,	the	fact	teachers	continued	to	struggle	even	in	this	more	naturalistic	setting	is	

noteworthy.		

	 Interestingly,	teachers	in	the	online	study	conducted	by	Aboody	et.	al.	(under	

review)	provided	more	examples	than	the	teachers	in	the	in-person	replication.	Rather	

than	being	too	“artificial,”	the	online	task	imposed	greater	constraints	that	may	have	led	to	

more	effective	teachers.	With	greater	restraints,	teachers	focused	on	a	narrower	window	of	

plausible	ideas	about	how	the	machine	activated	and	worked	harder	to	clarify	what	

learners	needed	to	know	about	those	ideas.	Learners	also	performed	well	in	the	online	

study,	adding	to	teachers’	effectiveness.	

It	is	important	to	note	that	our	results	are	consistent	with	previous	research	on	the	

curse	of	knowledge.	In	this	work,	researchers	have	found	that	we	overestimate	others’	

knowledge	as	a	function	of	our	own	knowledge	in	a	domain.	Thus,	our	own	previous	

knowledge	in	a	subject	inhibits	our	ability	to	reason	about	what	other	minds	think	about	

the	same	topic	(Birch	&	Bloom,	2004;	Nickerson,	R.S.,	1999;	Nickerson,	R.S.,	2001).	In	the	

current	work,	although	teachers	had	a	high	confidence	in	their	ability,	learners	were	not	as	

successful	as	teachers	predicted.	Prior	work	has	found	that	our	own	privileged	knowledge	

inhibits	our	ability	to	reason	about	what	other	people	think	about	the	same	topic.	

Additionally,	we	often	do	not	sufficiently	adjust	our	assumptions	about	another	person's	

mental	state,	and	thus	we	fail	to	accurately	infer	what	someone	else	does	or	does	not	know	

(Epley	&	Gilovich,	2001;	Furnham	&	Boo,	2011).	
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This	curse	of	knowledge	can	occur	across	a	broad	range	of	knowledge-acquisition	

modes	and	stages	of	human	development.	Seemingly,	once	we	attain	knowledge,	regardless	

of	how	it	is	obtained,	we	become	hindered	by	it.	For	example,	children	show	clear	signs	of	a	

curse	of	knowledge	whether	information	is	acquired	through	testimony,	observation,	or	

direct	interactions	(Bhandari	&	Barth,	2010).	And	although	we	become	better	at	

overcoming	this	curse	of	knowledge	as	we	age,	possessing	information	still	hinders	our	

ability	to	communicate	and	teach	others	into	adulthood.	In	adults,	Birch	et.	al.	(2017)	

demonstrated	how	either	inhibition	errors	or	fluency	misattributions	are	sufficient	to	

create	a	curse	of	knowledge.	Respectively,	these	mechanisms	describe	our	difficulty	

suppressing	the	relevant	knowledge	we	possess	when	reasoning	about	a	less	informed	

mind	and	mistaking	the	subjective	ease	with	which	ideas	to	come	to	our	own	mind	as	a	

shared	ease	(Birch	et.	al.,	2017).	

Previous	studies	have	investigated	how	the	curse	of	knowledge	may	be	impacted	by	

the	mode	in	which	the	knowledge	is	gained.	Similar	to	Bhandari	&	Barth	(2010),	which	

looked	at	how	acquiring	information	either	through	testimony	or	observation	affected	

curse	of	knowledge	in	children,	this	study	examined	whether	teaching	information	either	

digitally	or	in-person	contributes	to	teachers'	ability	to	reason	about	other	minds	and	

communicate	knowledge	with	the	goal	of	teaching.		

Crucially	however,	while	previous	work	has	produced	many	descriptions	of	the	

curse	of	knowledge,	no	quantitative	definitions	exist.	Therefore,	it	is	impossible	to	predict	

with	precision	how	performance	generalizes	across	task	variations.	In	our	future	and	

ongoing	research,	we	begin	to	try	to	formalize	our	understanding	of	the	curse	of	
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knowledge,	investigating	how	we	come	up	with	possible	hypotheses	ourselves,	and	how	we	

decide	which	possibilities	others	may	consider.		

In	our	current	ongoing	work,	we	introduce	participants	to	a	new	game,	called	the	

“dice	game”.	Combining	2	dies	in	the	right	way	earns	players	a	point.	Participants	are	not	

told	how	the	game	works;	they	are	simply	shown	one	example	of	a	dice	pair	that	would	

earn	a	point.	Participants	are	then	asked	to	come	up	with	possible	hypotheses	regarding	

the	game’s	rules.	We	investigate	whether	participants	come	up	with	different	hypotheses	

when	asked	to	reason	for	themselves	than	when	they	are	asked	to	reason	in	the	third	

person,	and	list	hypotheses	that	another	person	might	come	up	with.	With	this	

manipulation,	we	can	reveal	whether	even	at	baseline,	when	participants	themselves	have	

no	privileged	knowledge,	whether	we	represent	others’	minds	as	different	from	our	own	in	

a	systematic	way.	If	this	is	the	case,	this	work	may	begin	to	shed	light	on	how	precisely	the	

curse	of	knowledge	operates.	

Conclusion	

	 The	results	of	the	in-person	study	reveal	that	teachers’	ability	to	represent	learners’	

hypothesis	spaces	does	not	change	in	more	naturalistic	settings.	While	differences	in	

participant	motivation	may	increase,	their	performance	is	no	better	–	and	in	fact,	

performance	of	in-lab	teachers	was	worse	in	many	ways!	We	find	that	teachers	do	take	

advantage	of	the	naturalistic	settings	by	asking	more	questions	and	considering	other	

possible	hypothesis	spaces	only	available	in	more	naturalistic	settings,	but	still	not	enough	

to	accurately	teach	naïve	learners.	These	results	motivate	us	to	look	further	into	the	curse	

of	knowledge	effects	in	a	follow	up	to	this	study,	which	will	uncover	whether	the	same	

reasoning	limitations	occur	when	the	curse	of	knowledge	is	not	present.		
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