
Syntactically-Constrained Paraphrase Generation

with Tree-Adjoining Grammar

Sarah J. Widder

Advised by Robert Frank

April 15, 2020

Abstract

The paraphrasing task is twofold: a good paraphrase must both maintain se-

mantic similarity to the original sentence while also incorporating an interesting

level of syntactic diversity. In this work, we propose a modified syntactically

controlled paraphrase network (scpn) that is trained to produce a paraphrase

of the input sentence with a desired syntax, encoded as a sequence of Tree Ad-

joining Grammar elementary trees. First, we demonstrate that an scpn using

elementary trees can successfully produce paraphrases that follow the syntactic

constraint, remain faithful to the key semantic content of the original sentences,

and offer some level of syntactic diversity relative to the original sentences. We

also show how sequence-to-sequence translation of elementary trees can be used

to create an end-to-end paraphrase generation system that does not require

the elementary tree sequence of a desired paraphrase. Next, we explore how

this model architecture can be modified to simulate sequential human sentence

planning. We compare how the modified model performs when provided with

elementary trees in either linear or hierarchical order. The success of smaller

models trained on hierarchically-ordered data gives some support to models of

human sentence production that prioritize selection of hierarchically-relevant

information.

i

Contents

1 Introduction 1

1.1 Paraphrase Generation . 1

1.2 Previous Approaches . 1

1.3 Tree Adjoining Grammar . 4

1.4 Human Sentence Production . 6

1.5 Current Work . 7

2 Syntactically-Controlled Paraphrase Generation 7

2.1 Model Architecture . 7

2.2 Data Generation . 10

2.3 Evaluation Metrics . 12

2.4 Results . 13

2.5 Extension: Supertag Translation 14

3 Sentence Planning 16

3.1 Modified Model Architecture . 16

3.2 Data Manipulation . 17

3.3 Results . 18

4 Discussion 20

5 Future Work 21

6 Acknowledgements 22

References 23

ii

1 Introduction

1.1 Paraphrase Generation

Paraphrasing presents an interesting dilemma in natural language processing.

The paraphrasing task is twofold: a good paraphrase must both maintain se-

mantic similarity to the original sentence while also incorporating an interesting

level of syntactic diversity. In other words, the paraphrase must mean largely

the same thing as the reference sentence while using different structure and word

choice. While this process is fairly intuitive to a human, the open-ended nature

of paraphrase generation can present a computational challenge to paraphrasing

models. There can be many possible paraphrases of a given sentence, and they

may vary greatly in quality. It is difficult when training a model to produce

paraphrases of sentences to ensure that the paraphrases are structurally diverse

from the input sentences, while maintaining the important semantic content.

In spite of the challenges involved, quality paraphrase generation systems have

many possible uses in consumer applications such as dialogue systems as well

as components in larger models for downstream tasks.

1.2 Previous Approaches

Paraphrase generation has become a popular but challenging task in natural lan-

guage processing in recent years. Often, development of paraphrase generation

systems is done in the process of improving model performance on downstream

tasks. Paraphrase generation can aid in dataset augmentation or provide ad-

versarial examples that can increase model robustness on other tasks.

Many recent approaches focus on leveraging existing neural machine trans-

lation methods to produce or identify paraphrases. Two large corpora of para-

phrase pairs, ParaNMT-50M (Wieting and Gimpel, 2018) and ParaBank

(Hu et al., 2019), were generated through back-translation of the Czech half of

an English-Czech parallel corpus of movie subtitles. These approaches take ad-

vantage of large existing parallel corpora and pre-trained neural machine trans-

lation systems to produce large corpora of English paraphrase pairs. A similar

neural approach treats paraphrases as a foreign language for translation (Zhou

et al., 2019). However, translation and paraphrase generation are similar but

not identical tasks. The resulting paraphrases from this approach can lack diver-

sity. Mao and Lee (2019) demonstrate that simply parroting source sentences

can outperform state-of-the-art models on standard metrics. While a ‘good’

1

paraphrase is difficult to quantify, standard metrics do not seem to capture the

ability of these models to produce novel, interesting paraphrases.

Beyond methods that leverage neural machine translation techniques, trans-

formers and variational auto-encoders have also had promising results. Li et al.

(2019) propose a decomposable, transformer-based paraphrase generation sys-

tem that implements word, phrasal, and sentential paraphrase capabilities. Roy

and Grangier (2019) highlight the contrast between neural machine transla-

tion approaches and human paraphrase generation, which does not incorporate

translation as an intermediate step. They propose an unsupervised model that

leverages a variational auto-encoder for monolingual paraphrasing. Adversar-

ial training has also been used for paraphrase generation without additional

linguistic information (Yang et al., 2019).

Numerous approaches to paraphrase generation incorporate lexical or syntac-

tic constraints to control and direct paraphrase generation. A lexical constraint

is a requirement on the output of a model to include or exclude particular lex-

ical items. The development of ParaBank (Hu et al., 2019) leveraged lexical

constraints to produce multiple paraphrases for each source sentence. Kajiwara

(2019) uses negative lexical constraints to prevent key words from the input from

appearing in the output, forcing rewriting to generate more diverse paraphrases.

Qian et al. (2019) use reinforcement learning with multiple discriminators and

generators to produce a diverse set of paraphrases for each source sentence.

Each generator explores a novel way to paraphrase an input sentence, while one

of the discriminators determines whether each output conveys the same mean-

ing as the input. Gan and Ng (2019) approach question paraphrasing using

phrasal paraphrase suggestion to trigger generation in a particular direction. A

syntactic constraint is a requirement on the output of a model to conform to

a particular grammatical structure. Chen et al. (2019) encode syntactic con-

straints using an unrelated sentence as a syntactic exemplar, training a model

that uses the semantic content of one sentence and the syntactic structure of

another to generate a syntactically interesting paraphrase.

A particularly promising approach to addressing the issue of ensuring syn-

tactically diverse paraphrases comes from Iyyer et al. (2018), who propose syn-

tactically controlled paraphrase networks (scpns) that are trained to produce a

paraphrase of the input sentence with a desired syntax. The desired structure

of the paraphrase is given as an extra input to a neural encoder-decoder model.

The syntactic constraint was encoded as a constituency parse, in which a sen-

tence is broken down into sub-phrases called constituents. The constituency

2

S

VP

NP

NP

N

fish

D

a

V

ate

NP

N

cat

D

the

Figure 1: Constituency parse tree for the cat ate a fish, with the template
highlighted in blue.

parses used were generated by the Stanford parser (Manning et al., 2014). The

desired output structure was represented at varying levels of granularity; the

input could be a simple template consisting of only the top two levels of the

constituency parse or a full, linearized bracket parse without leaf nodes (i.e.,

tokens). For example, the full parse for the cat ate a fish might be (S (NP (D)

(N)) (VP (V) (NP (D) (N)))), while the template would simply be (S (NP)

(VP)). The bracketed constituency parse can also be represented with a tree as

in Figure 1, where the nodes retained in the template are shown in blue.

In Iyyer et al. (2018), the template method was preferred over the unwieldy

and overly-specific full parses, but also had significant drawbacks. When pro-

ducing multiple paraphrases of an input sentence, the most frequent templates

across the entire training corpus were used as syntactic inputs, regardless of

the structure or content of the input sentence. The syntactic manipulation was

generally successful in producing sentences that followed the desired structure,

but the context-independent selection of templates led to sometimes nonsensi-

cal outputs or invalid paraphrases as the semantic content of the input sentence

was forced into an unsuitable syntactic form. One such example given by the

authors occurs when the model is given the sentence “with the help of captain

picard , the borg will be prepared for everything .” and the template (FRAG

(INTJ) (,) (S) (,) (NP)), and produces the output “oh , come on captain

picard , the borg line for everything .” While this follows the syntactic structure

of the template, the semantic content of the original sentence is not maintained.

A different representation of syntactic structure may be more well suited to

3

syntactically-controlled paraphrase generation. This work proposes a modifica-

tion to the scpn of Iyyer et al. (2018) that uses a sequence of elementary trees

from Tree Adjoining Grammar (TAG) to represent the desired structure of the

paraphrase instead of a constituency parse.

1.3 Tree Adjoining Grammar

Tree Adjoining Grammar (TAG) (Joshi et al., 1975) is a lexicalized grammar

formalism that generates hierarchical structure through a system of tree rewrit-

ing. During TAG derivation, each word in a sentence is associated with an

elementary tree, a piece of syntactic structure that encodes the syntactic con-

straints imposed by the word on the sentence. Each elementary tree encodes

information about the structural positions of the word’s dependents in addi-

tion to the dependencies headed by a word. For example, as shown in Figure

2, a transitive verb such as ate might be associated with the elementary tree

t27, while a noun like cat or fish would be associated with the elementary tree

t3. In these elementary trees, the nodes labeled with the diamond indicate the

NP

NP*D♦

the

t1

NP

N♦

cat

t3

S

VP

NP1↓V♦

NP0↓

ate

t27

NP

NP*D♦
a

t1

NP

N♦

fish

t3

Figure 2: Elementary trees for The cat ate a fish.

structural position of the head of the tree. For the verbally-headed tree, the

NP nodes that appear along the tree’s frontier are the positions for the verb’s

arguments, i.e., its syntactic dependents. The subscripts on these arguments

encode the deep syntactic relations with respect to the elementary tree’s head

(0 is subject, 1 is direct object, 2 is indirect object).

Two derivational operations, substitution and adjoining can be used to com-

bine TAG elementary trees. Adjoining involves a special recursive elementary

tree called an auxiliary tree, which has a foot node (marked with an asterisk)

of the same category as the root node. For example, in Figure 2, tree t1 is an

NP-recursive tree associated with a determiner such as the. During adjoining,

a node N of category C in some elementary tree is rewritten with a C-recursive

auxiliary tree T, and N’s children are attached at the foot node of T. Thus, the

4

S

VP

NP1

NP

N

fish

D

a

V

ate

NP0

N

cat

D

the ate (t27)

fish (t3)

a (t1)

NP

cat (t3)

the (t1)

NP

0 1

Figure 3: Derived and derivation trees for the cat ate a fish.

determiner tree t1 in Figure 2 can adjoin to the NP root of the N-headed tree

t3, forming an NP-rooted tree corresponding to the cat.

In substitution, an elementary tree with a root node of category C is inserted

into a leaf node of category C marked with a down arrow in another elementary

tree. In the sentence The cat ate a fish, once the the auxiliary tree for the

adjoins to the elementary tree for cat, the resulting structure can be substituted

into the NP0 substitution node in the S-rooted tree t27 shown in Figure 2. The

results of these operations are shown in Figure 3: a derived tree (left), which

shows the syntactic structure of the fully parsed sentence, and a derivation tree

(right), which records the sequence of operations involved in the creation of the

derived structure. The nodes of the derivation tree correspond to elementary

trees and the edges (dependencies) correspond to substitution and adjoining

operations that have applied, i.e., a child node is an elementary tree that has

been substituted or adjoined into the parent node. Substitution is represented

with solid lines and are labeled with the index of the substitution site (0 for

subject and 1 for object), while adjoining is represented with dotted lines and

labeled with the locus of adjoining.

The sequence of elementary trees that would be associated with a potential

paraphrase of an input sentence can be used as the syntactic constraint in a

paraphrase generation model similar to that of Iyyer et al. (2018). A sequence

of elementary trees is almost a parse, as Bangalore and Joshi (1999) point out,

and provides a relatively rich representation of the syntactic constraints on a

sentence. For example, consider the passive sentence a fish was eaten by the

cat, where the desired paraphrase might be the active form the cat ate a fish.

5

The constituency parse template for the desired paraphrase would be (S (NP)

(VP)), while the sequence of elementary trees associated with each word of the

desired paraphrase would be t1 t3 t27 t1 t3 as in Figure 2. While the parse

template allows for a greater variety of possible outputs, these may not always

be interesting paraphrases of the source sentence. For example, the top two

levels of the constituency parse of the input sentence a fish was eaten by the

cat would yield the exact same parse template, meaning that the model could

simply parrot the input while obeying the syntactic constraint. In contrast, the

elementary tree sequence allows some flexibility in the output – the particular

nouns and verbs chosen for each tree can vary – but the predicate elementary

tree t27 ensures that the sentence must have an active verb with the agent on

the left and the object on the right. This prevents the model from parroting

the input and forces a syntactically diverse output that is still appropriate given

the content of the original sentence.

In addition to providing a linguistically-rich representation of the desired

syntactic structure of a paraphrase, using elementary trees rather than con-

stituency parses also allows for more flexible manipulation of the syntactic con-

straint. In particular, we can manipulate the order in which elementary trees

are presented to the decoder. The performance of the model under different

ordering paradigms may give some insight into how humans plan and produce

sentences, as discussed in the following sections.

1.4 Human Sentence Production

The paraphrasing task has many similarities to the general problem of human

sentence production. To produce a sentence, a human must take some mental

representation of the desired meaning of a sentence and generate an appropri-

ately structured sequence of words to convey this meaning. The syntactic plan-

ning involved in this process is difficult to analyze. While it is unlikely a speaker

has planned out the entire structure of their utterance and populated it with

the appropriate lexical items before they begin speaking, it also clear that some

planning must be done in advance. Influential models of sentence production

(Bock and Levelt, 1994; Kempen and Hoenkamp, 1987; Levelt, 1989) highlight

the importance of verbs in structural encoding, predicting that verb selection

must occur early in sentence formulation. However, experimental tests have

had mixed results: Schriefers et al. (1998) found no evidence for advance verb

selection in verb-final utterances in German, while Momma et al. (2016) found

6

evidence that verbs are planned in advance in some constructions in Japanese,

which is also verb-final. How exactly humans conduct syntactic planning, and

in what order, remains unclear.

1.5 Current Work

The model presented here will follow the general architecture of the scpn but

will use sequences of Tree Adjoining Grammar (TAG) elementary trees rather

than constituency parses to represent syntactic structure, allowing more linguis-

tic richness and flexibility in how this information is provided to the model.1

First, Section 2 presents the new scpn using TAG elementary trees, and dis-

cusses model performance on a simplified dataset generated for the task. Next,

Section 3 demonstrates how the model can be modified to simulate different

paradigms of human sentence planning. The order of elementary trees can

be manipulated to simulate linear sentence planning (choosing lexical items in

left-to-right sentential order) or more hierarchically-driven sentence planning

(choosing the verb and grammatical arguments first) that more closely matches

the sentence production models discussed in Section 1.4. The performance of

the scpn given these two kinds of structural encoding may then give some in-

sight into how syntactic planning is done in human sentence production. Section

4 will consider the significance of the results of the previous two sections, and

finally Section 5 covers some future applications of this work.

2 Syntactically-Controlled Paraphrase Genera-

tion

2.1 Model Architecture

Figure 4 shows the model architecture of the syntactically constrained para-

phrase network using elementary trees. Elementary trees are often referred to

as supertags in neural applications; we will use these terms interchangeably. As

with many neural approaches in language processing, recurrent neural networks

are used for both encoders and the decoder. In a recurrent neural network, the

input is fed to the network one token at a time, and each hidden unit is con-

nected to the hidden unit at the previous step. This allows the network to learn

a representation of a variable length input sequence as the computation unfolds

1Code and data available at https://github.com/sarah-widder/paraphrase

7

Figure 4: Model architecture. The reference sentence is encoded with a single-
layer GRU, the supertag sequence is encoded with a bidirectional LSTM, and
the decoder is a single-layer GRU. Dashed lines indicate attention over the
reference sentence hidden states.

over time. In particular, this model uses a simple one-layer Gated Recurrent

Unit (GRU, Cho et al. (2014)) for encoding the input sequence and decoding

the output. Similar to the Long Short-Term Memory (LSTM, Hochreiter and

Schmidhuber (1997)), a GRU includes gating mechanisms that control and man-

age the information flow between cells in a recurrent network. By regulating

information flow with these gating mechanisms, a GRU or LSTM can adaptively

capture dependencies across long sequences of data. The equations for the GRU

are given in Figure 5.

Given a sentential paraphrase pair 〈s1, s2〉 and a corresponding sequence of

elementary trees t2 for s2, we encode s1 with a unidirectional one-layer GRU.

The sequence of elementary trees is encoded with a bidirectional LSTM. The

equations for an LSTM are given in Figure 6. A bidirectional LSTM consists of

one LSTM network that reads the elementary tree sequence from left to right,

and one LSTM network that reads the elementary tree sequence from right to

left, and the hidden states of each LSTM are concatenated. The output of the

bidirectional LSTM is computed from the concatenation of the hidden states.

8

zt = σ(Wzxt + Uzht−1 + bz) (1)

rt = σ(Wrxt + Urht−1 + br) (2)

h̃t = tanh(Whxt + Uh(rt � ht−1) + bh) (3)

ht = zt � ht−1 + (1− zt)� h̃t (4)

Figure 5: Equations for the GRU, where xt is the input vector, ht is the output
vector, zt is the update gate vector, rt is the reset gate vector, and W , U , and
b are the parameter matrices and vector. σ represents the activation function,
either sigmoid or hyperbolic tangent.

ft = σg(Wfxt + Ufht−1 + bf) (5)

it = σg(Wixt + Uiht−1 + bi) (6)

ot = σg(Woxt + Uoht−1 + bo) (7)

c̃t = σh(Wcxt + Ucht−1 + bc) (8)

ct = ft ◦ ct−1 + it ◦ c̃t (9)

ht = ot ◦ σh(ct) (10)

Figure 6: Equations for the LSTM, where xt is the input vector, ft is the forget
gate activation vector, it is the update gate activation vector, ot is the output
gate activation vector, ht is the hidden state vector, c̃t is the cell input activation
vector, and ct is the cell state vector. W , U , and b are the parameter matrices
and vector. σ is the activation function, either sigmoid or hyperbolic tangent.

The output of the bidirectional LSTM at each time step can thus get information

from both the left context and the right context simultaneously. This ensures

that the encoding of the syntactic constraint on the output takes into account

the full sequence of elementary trees. This is particularly important in the case

of paraphrasing active and passive sentences, as a unidirectional left-to-right

encoding may not provide key information about the main verb of the output

sentence early enough. For example, if the input is a fish was eaten by the cat

and the sequence of elementary trees for the desired paraphrase is t1 t3 t27 t1

t3 (as in Figure 2), the model must first choose a noun to output for t3, perhaps

choosing fish. The model then receives the active verb form t27, produces ate,

and has already failed to maintain a key piece of semantic information from the

input sentence.

9

The decoder is a one-layer GRU augmented with attention over the encoded

states (Bahdanau et al., 2015). In recurrent encoder-decoder models, attention

is a weighted sum over the encoded states so that the decoder focuses on only

the relevant aspects of the input sequence at each decoding step. In this case,

at every time step the decoder receives the previous word (from the output or

ground-truth) wt−1, the attention-weighted average of encoder hidden states at,

and the output of the bidirectional elementary tree encoder zt, and computes

ht = GRU[wt−1; at; zt]. (11)

The decoder then computes a linear map of the hidden state followed by a

softmax to get a probability distribution over the words in the vocabulary, and

outputs the most likely word.

2.2 Data Generation

Two recent popular datasets of paraphrase pairs leverage parallel corpora and

neural machine translation. Wieting and Gimpel (2018) started with a large

Czech-English parallel corpus and used neural machine translation to translate

the Czech sentences back to English, producing a set of 50 million paraphrase

pairs, called paranmt-50m. Hu et al. (2019) expand on this approach with

lexical constraints that produce multiple sentential paraphrases for each source

sentence in the same Czech-English corpus, called ParaBank. While these

datasets offer a very large set of potential training pairs, the unconstrained na-

ture of the machine translation method leads to quality concerns. The source

material for the Czech-English parallel corpus is movie subtitles, which in-

cludes many sentence fragments and colloquialisms. Other issues include pairs

of nearly-identical source and paraphrase sentences and paraphrases that no

longer represent the original meaning of the source sentence. Table 1 gives

some examples of problematic paraphrase pairs.

To simplify the task of the paraphrasing system and ensure control over the

quality of paraphrase pairs, we generated training and test data using a simple

rule-based system. Source sentences were generated with a lexicalized Context-

Free Grammar (CFG) written in Python. The lexicon consisted of a limited set

of agent nouns, location nouns, adjectives, prepositions, and transitive verbs,

with a total vocabulary size of 100 tokens. Paraphrases were generated using a

limited set of operations: active-to-passive and passive-to-active, modal substi-

tution, synonym substitution, and prepositional phrase deletion and movement.

10

Reference Paraphrase
i ’m on a lasagna diet . i ’m on a boring diet .
so , what ’s your sign ? so , what ’s your signature ? “ stop . ”

sorry if i seemed doubtful in rome . i ’m sorry i doubted rome .
you share a toothbrush ? ! do you have a toothbrush ?

i don’t want to come home . i don’t want to go home .

Table 1: Examples of problematic paraphrase pairs from ParaNMT. Some
paraphrases introduce new information that was not included in the reference
sentence, while others lose or change information from the reference sentence.
Some paraphrases are nearly identical to the source sentence.

Paraphrase Operation Reference Paraphrase
Active/Passive a bear near the house bit a boy . a boy was bitten by a bear near the house .
Modal Substitution a sleepy rabbit must hate a silly sheep . a sleepy rabbit ought to hate a silly sheep .
Move PP by the barn , a happy rabbit loved the cat . a happy rabbit loved the cat by the barn .

Table 2: Examples of paraphrase pairs generated using the partially-lexicalized
CFG.

Examples are given in Table 2. The active-to-passive operation changes the voice

of the sentence from active to passive, while the passive-to-active operation per-

forms the same transformation in reverse. The modal substitution operation

changes one form of a modal such as must to another, such as ought to. These

modals can have different associated elementary trees, providing some diversity

to the syntactic constraint. The prepositional phrase deletion operation simply

removes a prepositional phrase that appeared in the reference sentence from

the paraphrase sentence. The prepositional phrase movement operation either

moves a prepositional phrase from the end of a sentence to the front, or from

the beginning of a sentence to the end. For synonym substitution, we randomly

select a noun or adjective from the paraphrase and replace it with a common

synonym from WordNet (Fellbaum, 1998).

Each reference and paraphrase sentence was assigned part-of-speech tags

using the Natural Language Toolkit POS tagger (Loper and Bird, 2002). Then,

each sentence and the corresponding sequence of part of speech tags was passed

to a pre-trained TAG supertagger (Kasai et al., 2017) that assigned a TAG

elementary tree to each word in the sentence. These pairs of sentences 〈s1, s2〉
and the sequence of supertags t2 formed the inputs to the model. The training

set consists of 171,452 paraphrase pairs, and the test set consists of 42,727

paraphrase pairs.

11

2.3 Evaluation Metrics

While the model is trained to produce only one paraphrase for each source

sentence, there are many possible appropriate paraphrases for a given source

sentence. These paraphrases may vary in both semantic similarity and syntactic

diversity relative to the source sentence.

As a baseline assessment of each model’s ability to produce the desired para-

phrase, basic word-for-word (wfw) and supertag-for-supertag (sfs) accuracy

measures are computed relative to the gold paraphrases in the evaluation set.

The word-for-word accuracy is the percentage of correct words in the model out-

put relative to the words in the test set paraphrases, allowing synonym substi-

tution. The model outputs are also part-of-speech-tagged and fed into the same

pre-trained supertagger, and these supertags are used to calculate supertag-

for-supertag accuracy. This metric indicates how well the model learned to

produce sentences that followed the syntactic constraints given in the form of

the paraphrase supertag sequences. Additionally, the word-for-word accuracy

is computed, allowing synonyms, among only the output words that had the

correct supertag (word-for-supertag, wfs).

For a more linguistically informed measure of each model’s ability to generate

quality paraphrases (which may or may not match the desired paraphrase word

for word), we use two other metrics for semantic fidelity and syntactic diversity.

As an estimate of the semantic fidelity of the model output, we first generate a

TAG parse of the output using the MICA parser (Bangalore et al., 2009), and

compare the dependency relations in the output to those in the parses of the

reference sentences. Dependency relations are trimmed to Root (main verb), 0

(subject), 1 (object), and each output sentence is scored on whether it maintains

the original root, subject, and object separately. These relations capture the

core meaning of these declarative transitive sentences - at the bare minimum, a

good paraphrase must preserve the correct main verb and its subject and object.

Each model is scored with the proportion of model outputs that maintained the

root, subject, and object from the inputs.

As an estimate of syntactic diversity, we use rouge-l (Lin, 2004; Lin and

Och, 2004), which identifies longest co-occurring in sequence n-grams between

two sentences. A higher value in rouge-l indicates more similar sequences,

so lower values are preferred in syntactically varied paraphrases. We report

precision, recall, and f-score for this metric.

12

Model wfw sfs wfs

Hidden size: 50 71.3 93.8 73.9
Hidden size: 100 80.1 94.2 82.3
Hidden size: 256 97.1 97.8 97.4

Table 3: Word-for-word (wfw), supertag-for-supertag (sfs), and word-for-
supertag (wfs) accuracy results for models trained with each hidden size.

TAG Dependency
rouge-l Overlap

Model Precision Recall F-Score Root Subject Object

Gold paraphrases 0.594 0.534 0.553 0.981 0.936 0.963
Hidden size: 50 0.465 0.386 0.412 0.669 0.545 0.527
Hidden size: 100 0.567 0.447 0.488 0.904 0.580 0.608
Hidden size: 256 0.587 0.527 0.546 0.983 0.931 0.956

Table 4: Model comparison on rouge-l and TAG Dependency Overlap scores.

2.4 Results

The reference encoder, supertag encoder, and paraphrase decoder all have the

same number of hidden units. We trained the full model with three different

hidden sizes: 50, 100, and 256.

Table 3 gives a comparison of model performance on word-for-word, supertag-

for-supertag, and word-for-supertag accuracy. Across all models, word-for-

supertag accuracy was slightly higher than simple word-for-word accuracy. This

indicates that getting the correct supertag was important and helpful when pre-

dicting the correct model output. The model with the largest hidden size, 256,

performed the best on all three metrics. The particularly high supertag accu-

racy of this model indicates that it learned to follow the syntactic constraint

dictated by the desired supertag sequence given with the input.

Table 4 gives a comparison of model performance using rouge-l and the

TAG dependency overlap scores described in Section 2.3. A lower rouge-l score

indicates a less similar sentence in terms of word choice and word order, so this

is preferred in a good paraphrase. A higher TAG dependency overlap score

indicates that the paraphrase successfully reproduced the main verb (Root) and

the correct deep syntactic roles of subject and object relative to the main verb.

In terms of rouge-l scores, the model with the smallest hidden size had the

lowest precision, recall, and f-score, indicating that these outputs were the most

different from the inputs in terms of word choice and word order. However,

13

Reference Sentence Desired Supertags Model Output

the curious penguin kicked a woman . t1 t3 t23 t331 tCO t1 t36 t3 t26 a woman was kicked by the curious penguin .
the shy scientist was loved by the goofy moose . t1 t2 t3 t27 t1 t36 t3 t26 the goofy elk loved the shy scientist .
by the barn , a cat was hated by the big sheep . t1 t3 t23 t331 tCO t1 t36 t3 t0 t1 t3 t26 a guy was hated by the big sheep by the barn .
the silly crocodile near the mall must love the shy model . t1 t36 t3 t4 t1 t3 t749 t31 t68 t1 t36 t3 t26 the silly crocodile near the room the model must the shy model .

Table 5: Sample model outputs for reference sentences and the associated su-
pertag sequence. Model errors are highlighted in red.

the poor performance of this model on the TAG dependency overlap metrics

indicates that while the outputs were more syntactically diverse, they were not

faithful representations of the semantic content of the input sentence. The model

with hidden size 100 had slightly higher rouge-l scores indicating outputs more

syntactically similar to the inputs, but performed better on maintaining the key

TAG dependencies. In particular, the medium-sized model was able to produce

the correct root verb 90.4% of the time, but still produced the correct subject

and object 58.0% and 60.8% of the time respectively on the full evaluation test

set.

The model with the largest size performed the best in terms of TAG de-

pendencies, successfully producing the correct root in 98.3% of sentences, the

correct subject in 93.1%, and the correct object in 95.6%. This model was close

to perfect in producing sentences with the same root, subject, and object as

the input sentence, and it also had similar rouge-l to the gold paraphrases.

The high word-for-word and supertag-for-supertag accuracy of this model from

Table 3 suggest that this model learned to accurately produce the gold para-

phrases exactly. Some sample successful and unsuccessful model outputs are

shown in Table 5. Most of the errors in the model output come from selecting

the wrong noun, repeating nouns and noun phrases, and dropping key words

from the input. The overall success of this model demonstrates the effectiveness

of the scpn architecture and the use of elementary trees as syntactic constraints

on the output.

2.5 Extension: Supertag Translation

An important part of this model architecture is the syntactic constraint encoded

in the supertag sequence for the desired paraphrase. However, to reliably pro-

duce good paraphrases for novel inputs, the problem remains of what supertag

sequence to provide as a syntactic guide for the output. One approach to this

problem is to treat the syntactic transformation involved during paraphrase

generation as translation of the supertag sequence of the input.

14

TAG Dependency
rouge-l Overlap

Model Precision Recall F-Score Root Subject Object

Hidden size: 256 + Gold 0.587 0.527 0.546 0.983 0.931 0.956
Hidden size: 256 + Translation 0.647 0.546 0.582 0.965 0.927 0.929

Table 6: Model comparison for rouge-l and TAG dependency overlap for the
model with hidden size 256 using gold paraphrase supertags and the model with
hidden size 256 using translated supertags.

Using the same reference-paraphrase corpus described in Section 2.2, we

treat the supertag sequences of the reference sentences as the source language

and the supertag sequences of the paraphrase sentences as the target and train

a simple sequence-to-sequence machine translation model using OpenNMT

(Klein et al., 2017). For evaluation, we first translate the supertag sequences of

the evaluation reference sentences using the OpenNMT model, and then use

these as the syntactic constraints for paraphrase generation using the model

discussed in section 2.1 with hidden size 256. We then evaluated the model

outputs using the translated supertag sequences with the same rouge-l and

TAG dependency overlap metrics as above. Since the paraphrases are gener-

ated from translated sequences of supertags, there are no ‘gold’ paraphrases

to compare to, so we do not compute word-for-word, supertag-for-supertag, or

word-for-supertag accuracy for the model outputs.

Table 6 reports rouge-l and TAG dependency overlap for the original model

hidden size 256 provided gold paraphrase supertag sequences and provided with

translated paraphrase supertag sequences. The rouge-l values are higher for

the model using translated supertags, indicating that these outputs were more

similar to the reference sentences. The model using translated supertags per-

formed slightly below the model using gold supertags on the TAG dependency

overlap metrics. Table 7 gives examples of some successful and unsuccessful

outputs of the model using translated supertags. In general, the generated para-

phrases are often shorter than the reference sentences. Prepositional phrases are

often omitted, but these are not essential for an acceptable paraphrase. Other

errors include omitting key words and repeating nouns and noun phrases, similar

to the errors of the model using gold paraphrases above.

Overall, while the model using translated supertags produces slightly lower-

quality paraphrases that were less syntactically diverse and semantically faithful

to the input, the model can still perform reasonably well at the paraphrase gen-

15

Reference Sentence Model Output

at the mall , the happy bear stalked a shy man . the happy bear stalked a shy man .
a tiny woman must stalk a tiny penguin by a house . a tiny woman has got to stalk a tiny penguin .
the model was loved by the small bird . the little bird was the model .
the duck hated a goofy cow by the room . a cow cow by the room was hated by the duck .

Table 7: Sample outputs for the model using translated supertag sequences.
Model errors are highlighted in red.

eration task without the need for a set of gold paraphrases. By incorporating the

syntactic transformation into the paraphrase generation process, rather than re-

quiring a set of gold paraphrases to dictate the syntactic constraints, this model

demonstrates an end-to-end method of syntactically-controlled paraphrase gen-

eration. The end-to-end system consists of a supertagger, a supertag transla-

tor, and a paraphrase generator, with only input being a reference sentence to

paraphrase. The modular nature of the architecture, with the supertagger and

supertag translation models trained separately from the paraphrase generation

model, suggests that improvements could be made to each individual compo-

nent to improve the quality of paraphrase generation. By training the supertag

translator on more diverse sets of supertag sequence pairs, we could open the

model up to producing even more syntactically diverse paraphrases.

3 Sentence Planning

3.1 Modified Model Architecture

In this section, we modify the model described above to simulate different

paradigms of human sentence planning. The key manipulation is in the su-

pertag encoder, which was a bidirectional LSTM in the original architecture

described in Section 2.1. A bidirectional encoding of the supertag sequence is

implausible as a model of sentence planning, as a human may not fully gen-

erate the planned structure of a sentence before beginning to speak. Instead

of a bidirectional LSTM for supertag encoding, we use a unidirectional GRU

with the same architecture as the reference sentence encoder (see Figure 5 for

equations). The decoder then receives at each step the previous word wt−1, the

attention-weighted average of encoder hidden states at, and the output of the

unidirectional elementary tree encoder ut, and computes

16

ht = GRU[wt−1; at;ut]. (12)

By encoding the supertag sequence only from left to right, this simulates how

a human might plan the structure of a sentence sequentially, perhaps beginning

to utter words before the full structure of the sentence has been determined.

3.2 Data Manipulation

The order of elementary trees is manipulated to simulate linear sentence plan-

ning (choosing lexical items in left-to-right sentential order) or more hierarchically-

driven sentence planning (choosing the verb and grammatical arguments first)

that more closely matches the sentence production models discussed in Sec-

tion 1.4. The linear sentence planning paradigm will use the original sequences

of supertags and words for desired paraphrases as described in Section 2.2. To

simulate hierarchical planning, we reorder the supertag sequence and the associ-

ated sentence for each desired paraphrase according to a top-down, left-to-right

traversal of a TAG derivation tree for the sentence. This follows the linguistic

intuition that when planning a sentence or phrase, we will select the head first,

and then fill in the dependents.

First, the paraphrase sentences and supertags are passed to the MICA TAG

Parser (Bangalore et al., 2009). The MICA parser computes a dependency parse

of each sentence using the syntactic information encoded in the elementary trees,

and outputs a list of TAG dependency relations connecting the words in the

sentence, which can be interpreted into a derivation tree for the sentence.

The basic algorithm to reorder the paraphrase sentence s2 and elementary

tree sequence t2 to the reordered s′2 and t′2 follows a generally top-down, left-

to-right traversal of the derivation tree of the sentence. First, identify the main

predicate, marked with the deep syntactic role of root in the MICA parse, and

put this word and the corresponding supertag first. Then recursively copy over

the root item’s dependents, starting with those on the left and their dependents.

Figure 7 gives an example of the derivation tree and reordered outputs for the

sentence the cat ate a fish.

17

Linear-order sentence
s2: the cat ate a fish
t2: t1 t3 t27 t1 t3

Hierarchical-order sentence
s′2: ate cat the fish a
t′2: t27 t3 t1 t3 t1

ate (t27)

fish (t3)

a (t1)

NP

cat (t3)

the (t1)

NP

0 1

Figure 7: Example of hierarchical reordering (left) for the sentence the cat ate
a fish, following a top-down, left-to-right traversal of the derivation tree (right).

Model WFW SFS WFS

Hidden size: 50
Linear 0.708 0.962 0.715
Hierarchical 0.786 0.960 0.799

Hidden size: 100
Linear 0.740 0.922 0.773
Hierarchical 0.874 0.962 0.887

Table 8: Model comparison for different hidden sizes and training data ordering
on word-for-word (wfw), supertag-for-supertag (sfs), and word-for-supertag
(wfs) accuracy.

3.3 Results

For each hidden size (50 or 100)2, we train the model described in Section 3.1

using either linearly-ordered or hierarchically-ordered supertags for the syntac-

tic constraint. Because the model trained on hierarchically-ordered supertags

outputs sentences in the hierarchical order shown in Figure 7, we first reverse

the procedure used to generate the hierarchical order to reorder these outputs

back to linear left-to-right order. This allows the supertagger and parser to

process the outputs of the hierarchical model correctly.

We evaluate each model on the same metrics described in Section 2.3, com-

paring basic model performance on word-for-word, supertag-for-supertag, and

word-for-supertag accuracy as well as ROUGE and TAG dependency overlap.

Table 8 shows the performance of each model on the word-for-word (wfw),

supertag-for-supertag (sfs), and word-for-supertag (wfs) accuracy metrics. The

models both had similarly high supertag-for-supertag accuracy, indicating that

the unididrectional supertag encoding was generally successful at enforcing the

syntactic constraint on the output. The models trained to produce paraphrases

in hierarchical order was more successful at producing the desired paraphrase

word-for-word. This implies some advantage to providing syntactic information

in a hierarchical way over linear order.

2We also ran each model with hidden size 256, but these models had evaluation errors.

18

TAG Dependency
rouge-l Overlap

Model Precision Recall F-Score Root Subject Object

Gold Paraphrases 0.594 0.534 0.693 0.981 0.936 0.963

Hidden size: 50
Linear 0.520 0.391 0.435 0.727 0.362 0.359
Hierarchical 0.587 0.447 0.496 0.889 0.793 0.756

Hidden size: 100
Linear 0.428 0.391 0.406 0.876 0.431 0.431
Hierarchical 0.666 0.611 0.633 0.938 0.884 0.873

Table 9: Model comparison on rouge-l and TAG Dependency Overlap scores.

Table 9 gives a comparison of model performance using rouge-l and the

TAG dependency overlap scores described in Section 2.3. A lower rouge-l score

indicates a less similar sentence in terms of word choice and word order, so this

is preferred in a good paraphrase. A higher TAG dependency overlap score

indicates that the paraphrase successfully reproduced the main verb (Root) and

the correct deep syntactic roles of subject and object relative to the main verb.

In terms of rouge-l scores, the models trained on linear-order data had

lower scores than models of the same size trained on hierarchical-order data.

This indicates that the outputs of the linear-order models were less similar

to the input, preferable in good paraphrases. However, the TAG dependency

overlap scores for these models indicate that the models trained on linearly-

ordered data did a poor job of maintaining the key semantic information from

the input. The proportion of sentences for these models that produced the

correct subject and object were particularly low. This fits with the prediction

that the unidirectional encoding of supertags will result in the model producing

the subject before receiving information about the verb that might affect the

order of noun arguments in the sentence.

Table 10 compares model performance in terms of TAG dependency overlap

on two subsets of the data, one including only active-passive and passive-active

pairs, and the other including only active-active and passive-passive pairs. While

the majority (72%) of pairs involving actives and passives are active-passive or

passive-active transformations, the other (28%) in the subset do not include the

transformation, so the model cannot be completely successful by simply learning

to perform the transformation every time.

19

Active-Passive TAG Active-Active TAG
Dependency Overlap Dependency Overlap

Model Root Subject Object Root Subject Object

Gold Paraphrases 0.999 0.967 0.991 0.999 0.944 0.968

Hidden size: 50
Linear 0.936 0.368 0.374 0.964 0.351 0.375
Hierarchical 0.995 0.824 0.826 0.992 0.810 0.686

Hidden size: 100
Linear 0.955 0.448 0.459 0.842 0.437 0.432
Hierarchical 0.993 0.951 0.964 0.990 0.881 0.890

Table 10: Model comparison for TAG dependency overlap on active-passive and
passive-active sentences (left) and active-active and passive-passive sentences
(right).

Within each model, performance on the active-passive subset was generally

slightly above performance on the active-active subset. This is likely due to the

significantly greater frequency of active-passive pairs compared to active-active

pairs. Since the difference in performance is relatively small, this indicates that

the models were most likely not simply changing the voice for every active or

passive sentence, and rather followed the supertag sequence for each sentence

to correctly predict whether or not the transformation should occur. As with

the full evaluation set, the models trained on hierarchically-ordered data out-

performed those trained on linearly-ordered data.

The models trained on hierarchically-ordered data performed better at pro-

ducing syntactically diverse while semantically faithful paraphrases compared

to the models trained on linearly-ordered data. This supports the prediction

that providing the syntactic constraint in a more efficient way relative to the hi-

erarchical linguistic structure of the desired output sentence will result in better

paraphrases.

4 Discussion

In Section 2, we outlined the performance of several models trained on our

limited paraphrase generation task. While performance differed depending on

the model architecture, the models for the most part were able to produce rea-

sonable paraphrases of English sentences. The model with the largest hidden

20

size performed best, generating paraphrases that were high in semantic fidelity

to the reference sentences and comparable in syntactic diversity to the gold

paraphrases. The performance of this model indicates that TAG elementary

trees can be successfully used as syntactic constraints for paraphrase genera-

tion. In addition, Section 2.5 demonstrates a method for end-to-end paraphrase

generation by incorporating supertag translation as an intermediate step. This

allows the model to generalize to new domains and inputs for which the desired

sequence of elementary trees for the paraphrase is not explicitly known.

In Section 3, we demonstrated how a similar model architecture could be used

to explore two paradigms for syntactic planning in sentence production. Using

a unidirectional supertag encoder, we were able to simulate sequential syntac-

tic planning, and provided the models with two different methods for ordering

the syntactic constraint. Organizing the desired paraphrase supertags hierar-

chically did boost performance over organizing them linearly. This supports

the hypothesis that due to the linear, left-to-right nature of the unidirectional

supertag encoding, in order to produce the correct arguments at the right time,

the model must learn the most important and syntactically relevant information

first. This supports the sentence production models discussed in Section 1.4 in

that it seems easier to produce a desired sentence when syntactically relevant

information such as the main verb is selected first. While more research into

human sentence planning is necessary, this work provides some computational

evidence supporting hierarchical organization of syntactic planning during sen-

tence production.

5 Future Work

A significant limitation of this work is the artificial nature of the data used for

training and testing. While the simplified data did ensure a controlled environ-

ment with quality pairs of paraphrases, the training corpus used hardly repre-

sents the vast diversity of possible paraphrase pairs in English. In particular,

the dataset was significantly biased towards active-passive and passive-active

transformations. The conclusions made from the results of the model compar-

ison must be considered in the context of the simplified task environment. In

future work, we plan to use the same model architecture trained on real-world

data, such as question pairs from Quora (Iyer et al., 2017) or image captions

from Flickr (Plummer et al., 2015).

21

It would also be interesting to explore how the unidirectional elementary

tree encoding with the two ordering paradigms would perform in a verb-final

language such as German or Japanese. We might expect the linear order to

result in very low model performance, while the hierarchical order should result

in similarly high performance as in English.

6 Acknowledgements

This work would not have been possible without the endless support and encour-

agement of Professor Bob Frank in the Linguistics Department at Yale. I would

also like to thank the other members of Computational Linguistics at Yale as

well as the Yale Cognitive Science Department for supporting me through this

process. Finally, thanks to my family and friends for putting up with never-

ending conversations about paraphrases and buggy Python code.

22

References

Bahdanau, D., Cho, K., and Bengio, Y. (2015). Neural machine translation

by jointly learning to align and translate. 3rd International Conference on

Learning Representations, ICLR 2015 ; Conference date: 07-05-2015 Through

09-05-2015.

Bangalore, S., Boullier, P., Nasr, A., Rambow, O., and Sagot, B. (2009). Mica:

a probabilistic dependency parser based on tree insertion grammars.

Bangalore, S. and Joshi, A. K. (1999). Supertagging: An approach to almost

parsing. Comput. Linguist., 25(2):237–265.

Bock, K. and Levelt, W. J. M. (1994). Language production : Grammatical

encoding.

Chen, M., Tang, Q., Wiseman, S., and Gimpel, K. (2019). Controllable para-

phrase generation with a syntactic exemplar. In Proceedings of the 57th An-

nual Meeting of the Association for Computational Linguistics, pages 5972–

5984, Florence, Italy. Association for Computational Linguistics.

Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F.,

Schwenk, H., and Bengio, Y. (2014). Learning phrase representations using

rnn encoder-decoder for statistical machine translation.

Fellbaum, C. (1998). WordNet: An Electronic Lexical Database. Bradford

Books.

Gan, W. C. and Ng, H. T. (2019). Improving the robustness of question an-

swering systems to question paraphrasing. In Proceedings of the 57th Annual

Meeting of the Association for Computational Linguistics, pages 6065–6075,

Florence, Italy. Association for Computational Linguistics.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural

computation, 9:1735–80.

Hu, J. E., Rudinger, R., Post, M., and Durme, B. V. (2019). Parabank: Mono-

lingual bitext generation and sentential paraphrasing via lexically-constrained

neural machine translation. Proceedings of the AAAI Conference on Artificial

Intelligence, 33:6521–6528.

23

Iyer, S., Dandekar, N., and Csernai, K. (2017). First quora dataset release:

Question pairs. data. quora. com.

Iyyer, M., Wieting, J., Gimpel, K., and Zettlemoyer, L. (2018). Adversarial

example generation with syntactically controlled paraphrase networks. In

Proceedings of the 2018 Conference of the North American Chapter of the

Association for Computational Linguistics: Human Language Technologies,

Volume 1 (Long Papers), pages 1875–1885, New Orleans, Louisiana. Associ-

ation for Computational Linguistics.

Joshi, A. K., Levy, L. S., and Takahashi, M. (1975). Tree adjunct grammars.

Journal of computer and system sciences, 10(1):136–163.

Kajiwara, T. (2019). Negative lexically constrained decoding for paraphrase

generation. In Proceedings of the 57th Annual Meeting of the Association for

Computational Linguistics, pages 6047–6052, Florence, Italy. Association for

Computational Linguistics.

Kasai, J., Frank, R., McCoy, R. T., Rambow, O., and Nasr, A. (2017). Tag

parsing with neural networks and vector representations of supertags. In

Proceedings of EMNLP. Association for Computational Linguistics.

Kempen, G. and Hoenkamp, E. (1987). An incremental procedural grammar

for sentence formulation. Cognitive Science, 11(2):201–258.

Klein, G., Kim, Y., Deng, Y., Senellart, J., and Rush, A. M. (2017). Open-

nmt: Open-source toolkit for neural machine translation. arXiv preprint

arXiv:1701.02810.

Levelt, W. J. M. (1989). Speaking: From intention to articulation. MIT Press,

Cambridge, MA.

Li, Z., Jiang, X., Shang, L., and Liu, Q. (2019). Decomposable neural paraphrase

generation. In Proceedings of the 57th Annual Meeting of the Association for

Computational Linguistics, pages 3403–3414, Florence, Italy. Association for

Computational Linguistics.

Lin, C.-Y. (2004). ROUGE: A package for automatic evaluation of summaries.

In Text Summarization Branches Out, pages 74–81, Barcelona, Spain. Asso-

ciation for Computational Linguistics.

24

Lin, C.-Y. and Och, F. J. (2004). Automatic evaluation of machine translation

quality using longest common subsequence and skip-bigram statistics. In

Proceedings of the 42nd Annual Meeting of the Association for Computational

Linguistics (ACL-04), pages 605–612, Barcelona, Spain.

Loper, E. and Bird, S. (2002). NLTK: the natural language toolkit. CoRR,

cs.CL/0205028.

Manning, C., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S., and McClosky,

D. (2014). The Stanford CoreNLP natural language processing toolkit. In

Proceedings of 52nd Annual Meeting of the Association for Computational

Linguistics: System Demonstrations, pages 55–60, Baltimore, Maryland. As-

sociation for Computational Linguistics.

Mao, H.-R. and Lee, H.-Y. (2019). Polly want a cracker: Analyzing perfor-

mance of parroting on paraphrase generation datasets. In Proceedings of

the 2019 Conference on Empirical Methods in Natural Language Processing

and the 9th International Joint Conference on Natural Language Processing

(EMNLP-IJCNLP), pages 5960–5968, Hong Kong, China. Association for

Computational Linguistics.

Momma, S., Slevc, L. R., and Phillips, C. (2016). The timing of verb selection in

japanese sentence production. Journal of Experimental Psychology: Learning,

Memory, and Cognition, 42(5):813–824.

Plummer, B. A., Wang, L., Cervantes, C. M., Caicedo, J. C., Hockenmaier, J.,

and Lazebnik, S. (2015). Flickr30k entities: Collecting region-to-phrase cor-

respondences for richer image-to-sentence models. In The IEEE International

Conference on Computer Vision (ICCV).

Qian, L., Qiu, L., Zhang, W., Jiang, X., and Yu, Y. (2019). Exploring diverse ex-

pressions for paraphrase generation. In Proceedings of the 2019 Conference on

Empirical Methods in Natural Language Processing and the 9th International

Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages

3173–3182, Hong Kong, China. Association for Computational Linguistics.

Roy, A. and Grangier, D. (2019). Unsupervised paraphrasing without transla-

tion. CoRR, abs/1905.12752.

25

Schriefers, H., Teruel, E., and Meinshausen, R. (1998). Producing simple sen-

tences: Results from picture–word interference experiments. Journal of Mem-

ory and Language, 39(4):609 – 632.

Wieting, J. and Gimpel, K. (2018). ParaNMT-50M: Pushing the limits of para-

phrastic sentence embeddings with millions of machine translations. In Pro-

ceedings of the 56th Annual Meeting of the Association for Computational

Linguistics (Volume 1: Long Papers), pages 451–462, Melbourne, Australia.

Association for Computational Linguistics.

Yang, Q., Huo, Z., Shen, D., Cheng, Y., Wang, W., Wang, G., and Carin, L.

(2019). An end-to-end generative architecture for paraphrase generation. In

Proceedings of the 2019 Conference on Empirical Methods in Natural Lan-

guage Processing and the 9th International Joint Conference on Natural Lan-

guage Processing (EMNLP-IJCNLP), pages 3132–3142, Hong Kong, China.

Association for Computational Linguistics.

Zhou, Z., Sperber, M., and Waibel, A. (2019). Paraphrases as foreign languages

in multilingual neural machine translation. In Proceedings of the 57th Annual

Meeting of the Association for Computational Linguistics: Student Research

Workshop, pages 113–122, Florence, Italy. Association for Computational Lin-

guistics.

26

