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Abstract 

Aversive learning has been demonstrated to alter perceptual discrimination abilities 

across sensory domains. Recent research has discovered that visual aversive learning with 

negative images leads to generalization of visual perceptual stimuli. The present study aims to 

determine whether visual aversive learning increases or decreases discrimination abilities after 

learning an association with monetary loss. The study also explores the relationship between 

perceptual processes and the clinical disorders of anxiety and obesity, building on past research 

that links overgeneralization of fearful stimuli with anxiety disorders and impaired associative 

learning with obesity. We test visual discrimination performance before and after an aversive 

learning task. Results demonstrate no significant change in visual discrimination following the 

learning task. However, the findings reveal a trend towards impaired aversive learning with 

money in overweight and obese individuals and a trend towards decreased discrimination of 

visual stimuli after aversive learning in individuals with anxiety. This study provides a 

preliminary framework for future investigation of learning and discrimination mechanisms and 

their clinical significance. 
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I. Introduction 

Organisms regularly encounter perceptual stimuli that are similar to each other but not 

perfectly identical. It is critical for organisms to develop and adjust their perceptual abilities in 

order to adapt to new environments for survival (Guttman & Kalish, 1956; Hovland, 1937; 

Shalev et al., 2018; Webster, 2012). When one stimulus is threatening, the difference between 

these stimuli is important and must be differentiated. Other situations necessitate generalizing 

two similar stimuli so that they are perceived as the same, such as when a group of stimuli are 

dangerous. However, it remains unclear which contexts or environmental variables enable 

increased or decreased perceptual discrimination of similar stimuli. 

Associative learning has been proven to augment and diminish perceptual discrimination 

in both animals and humans. Prior research using a paired learning and discrimination paradigm 

provides evidence that discrimination abilities can change after learning associations with 

rewards or losses (Dymond et al., 2014; Hovland et al., 1937; Laufer & Paz, 2012; Zhang et al., 

2018). Aversive learning paradigms are used to condition individuals to associate a given 

stimulus with a negative consequence. As a means of survival, species have evolved to learn to 

avoid cues that predict threatening, dangerous, or unappealing outcomes (Ginsburg & Jablonka, 

2010; Lindstrom et al., 2016). A recent study investigating how aversive learning affects 

perceptual discrimination has found that using unpleasant pictures decreased the ability to 

distinguish between similar stimuli (Shalev et al., 2018). Yet, many of the choices that people 

face in modern-day life involve consequences of money rather than unpleasant images. The 

present study aims to determine the impact of aversive learning with monetary losses on 

individual discrimination abilities. 
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Given that the present study collects information on state anxiety and body mass index 

(BMI), this perceptual question has important implications in clinical settings for patients with 

anxiety disorders and obesity. First, the generalization of perceptual stimuli observed in this 

study might contribute to the body of literature that has linked perceptual overgeneralization to 

anxiety disorders. (Dunsmoor & Paz, 2015; Lenaert et al., 2014). Second, the present study will 

build on recent findings of impaired associative learning with food rewards in obese women. 

This study hopes to inform future research on aversive learning and discrimination behaviors in 

order to improve treatments for these patient populations.  

1.1 Discrimination  

Perception shapes the experience of being alive. The ability to recognize a stimulus 

through auditory, visual, olfactory, tactile or gustatory perception is what enables organisms to 

interact with their environment. For humans, environmental stimuli can elicit conscious 

emotions, such as desire, fear, or indifference, as well as unconscious perceptual changes 

(Vervliet et al., 2013). However, similar stimuli in the environment can be difficult to 

differentiate. 

The capacity to discriminate between similar stimuli varies across individuals (Mollon, 

2017; Witkin, 1950). A just noticeable difference (JND) is a measure of the smallest 

discriminable difference between two similar stimuli (Guttman & Kalish, 1956; Hovland, 1937). 

JNDs are a useful measure of individuals’ intrinsic perceptual thresholds under a given set of 

circumstances. JNDs have been identified and measured across perceptual domains using visual, 

auditory, olfactory, and tactile stimuli (Davarpanah & Heath, 2014; Li et al., 2008; Shalev et al., 

2018). To quantify the impact of an intervention on perception, individual JND values can be 
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measured before and after an intervention to observe how the intervention alters perceptual 

ability.  

Discrimination in the visual domain is prevalent in many aspects of everyday life. For 

example, visual discrimination is necessary for identifying different cans on the grocery store 

shelf or different faces in a crowd. Within the domain of visual perception, individual differences 

in perception may be a result of varied visual acuity or variation in brain structure or function. 

Although examining between-subject visual discriminatory ability across a population or study 

sample can inform research on general human perception, observing within-subject changes in 

discriminatory ability before and after an event can inform research on the malleability of human 

perception. 

1.2 Associative Learning  

Associative learning is the process by which organisms acquire an understanding of the 

relationship between two or more elements. Under experimental conditions, associative learning 

is tested by pairing a conditioned stimulus (CS+) with an outcome at a given frequency. After a 

given number of pairing trials, participants learn to expect the outcome when primed with the 

CS+. Reward learning involves pairing stimuli with positive outcomes, while aversive learning 

involves pairing stimuli with negative outcomes.  

In the early twentieth century, Ivan Pavlov was a pioneer in the field of conditioning that 

built a framework for how to study learning behaviors (1927). Reward learning has been 

extensively investigated across experimental domains since Ivan Pavlov’s original conditioning 

experiments with dogs in the early twentieth century. These experiments famously demonstrated 

classical conditioning by pairing a bell stimulus with the reward of food and observing the dog’s 

salivation, an unconditioned response at a given frequency. Salivation after hearing the bell 
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marked successful learning of the association between the bell and the food in the dog.  Aversive 

learning, or fear conditioning, pairs stimuli with negative outcomes at a given frequency. The 

individual learns to expect the negative outcome immediately after perceiving the stimulus. 

Simultaneously to his investigation of reward learning, Pavlov used classical conditioning to 

successfully teach animal models to fear stimuli that have been associated with a threatening 

outcome.  

Since Pavlov’s groundbreaking research, many researchers have examined the behaviors 

of fear conditioning using a wide variety of stimuli and outcomes (Grice, 1948; Guttman & 

Kalish, 1956; Hovland, 1937). Although classical conditioning has been extensively used to 

study associative learning in animal models, it has also been effectively tested in humans (Reiss, 

1980; Struyf et al., 2015; Zhang et al., 2018). Recent technological and methodological 

innovations have sparked renewed interest in the neurobiology and clinical salience of aversive 

learning and generalization, specifically the investigation of how learning impacts perceptual 

discrimination. 

1.3 Discrimination Learning 

Discrimination learning describes associative learning that is applied to research on 

perceptual discrimination in order to determine how learning changes human perception of 

stimuli that one encounters in the world. There is general agreement across previous studies on 

reward learning and discrimination that reward learning leads to increased perceptual 

discrimination (Pascucci et al., 2015; Seitz et al., 2009; Zhang et al., 2018). However, there is no 

consensus on the influence of aversive learning on discrimination. Although fear conditioning 

has been repeatedly proven to influence perception, prior research has demonstrated mixed 
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evidence of both increased and decreased discrimination abilities following aversive learning 

tasks. 

Like many other species, humans have evolved to learn associations between certain cues 

and threats in order to avoid dangerous or unfavorable outcomes (Lindstrom et al., 2016). 

Learning associations between stimuli and negative outcomes can impact the ability to 

discriminate between perceptual stimuli that are similar to the CS. Attempts to quantify the 

magnitude and direction of this impact have produced mixed results. Some studies that use 

olfactory stimuli have found that aversive learning enhances the ability to discriminate between 

odor cues (Li et al., 2008; Parma et al., 2015). Evidence of increased olfactory discrimination has 

been explained by increased plasticity of the olfactory cortex following aversive learning. 

Nevertheless, a larger proportion of research has also found aversive learning to deteriorate 

discrimination skills when using sounds and smells as aversive reinforcers (Dunsmoor & Paz, 

2015; Laufer & Paz, 2012; Resnik et al., 2011). These findings of decreased discrimination align 

with Pavlov’s historic conditioning experiments (1927). A decreased ability to distinguish 

between stimuli is termed generalization. 

A recent study has implemented an associative learning task that pairs visual and auditory 

stimuli with aversive images (Shalev et al., 2018). These findings provide further evidence that 

aversive learning diminishes perceptual discrimination ability, thus producing greater 

generalization between similar visual stimuli. The study offers a neural explanation that the 

decrease in JND is caused by a central multimodal brain network that alters perceptual properties 

following exposure to a negative event. Shalev et al. propose that increased generalization is a 

defensive behavior which has evolved to protect the organism against the possibility of aversive 

outcome (2018). We model the present study after the experimental design of Shalev et al. by 
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testing discrimination ability with visual stimuli before and after aversive learning. However, the 

present study substitutes a learned aversive outcome of monetary losses in place of unpleasant 

images due to the prevalence of monetary consequences in everyday life. 

 

II. The Present Study 

2.1 Significance 

The present study aims to determine the impact of aversive learning with monetary losses 

on individual visual discrimination abilities. Discrimination is dictated by perceptual capacities 

in the brain. Of all perceptual abilities, vision is the dominant sensory domain in humans. Much 

of the environment that is perceived in everyday life is processed by the visual cortex. 

Individuals learn associations between the things they see with various outcomes based on 

contextual information. Therefore, the effect of aversive learning on discrimination of visual 

stimuli plays an important role in daily life. Similarly, monetary losses are used in the present 

study as aversive learning outcomes because of their everyday salience and non-invasive nature. 

Previous studies have examined aspects of this perceptual learning model, but never combined 

visual aversive learning with money loss. The present study offers a novel, preliminary 

investigation on the impact of aversive learning on visual perception. We aim to provide 

evidence that aversive learning leads to generalization of similar stimuli. This research has 

potential implications of revealing psychological and neural mechanisms that drive perception 

and learning behavior. Understanding individual differences could have clinical applications in 

tailoring treatments for individuals with anxiety disorders or obesity.   

2.2 Hypotheses 
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2.2.1 Hypothesis 1. We hypothesize that within-subject discrimination thresholds (JNDs) 

will increase following an aversive learning task that pairs visual CS+ with the aversive outcome 

of monetary loss, but that discrimination thresholds for CS- will not change significantly. This 

expectation is based off recent findings that visual aversive learning decreases perceptual 

capacity to discriminate between stimuli that have been paired with aversive images (Shalev et 

al., 2018).  

2.2.2 Hypothesis 2. The study aims to conduct an exploratory analysis that finds relevant 

dimensions of learning and discrimination performance using measures such as gender, BMI, 

and state-trait anxiety measures. Study findings on individual differences have the potential to be 

further examined in follow-up studies on impaired learning and discrimination in anxiety 

disorders or obesity. 

 

III. Methods 

3.1 Participants 

Participants were recruited from a pool of past participants in the Decision Neuroscience 

Lab and flyers posted across Yale University and Downtown New Haven. Participants included 

healthy individuals (N= 24, 13 female) with ages ranging from 19-36 (M= 23.92, SD= 4.96.) 

Prior to their participation, participants were informed that they would receive $10 compensation 

with the opportunity for further monetary earnings based on the task. 

3.2 Experimental Design 

The experimental code was developed on PsychoPy using the programming language of 

Python. The script was built off a discrimination staircase framework previously designed by 

Michael Grubb. Participants were assigned into one of four experimental groups. A 2 x 2 design 

was used to counterbalance 2 variables (Figure 1). The first variable indicated whether the CS+ 
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has horizontally-oriented or vertically-oriented striped circles and the second variable indicated 

the order of CS+ and CS- in the discrimination task. This structure aimed to eliminate anticipated 

effects of the stimulus itself on behavior, including stimulus order and participant ease of 

discriminating circles within the horizontal vs. vertical domains. Gabor stimuli were used in a 

staircase model to measure perceptual discrimination thresholds. Gabors are frequently used as a 

measure of individual perceptual capability in the field of research on visual perception. 

 

Figure 1. Experimental Group Assignment. CS+ assignment and stimulus order were 
counterbalanced across subjects. 
 

Gabor orientation was chosen as the method of determining a measurable discrimination 

threshold in agreement with the design of the Shalev et al. visual aversive learning task (2018). 

Although Shalev et al. measured visual stimuli discrimination using both orientation and color 

contrast, color contrast was not used in the present study due to the lack of specificity in color 

contrast differences on the experimental computer screen. Altering the orientation of stripes 

provided a useful measure of discrimination that could be incrementally adjusted in order to 

determine individual discrimination capabilities. Gabor stripes can be oriented at any given 

rotation angle from a baseline orientation. The horizontal baseline orientation was exactly 

horizontal across the circle (0 degrees), parallel to the horizon. The vertical baseline orientation 

was exactly vertical across the circle (90 degrees), perpendicular to the horizon. In the present 
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study, Gabor orientations were rotated either clockwise or counterclockwise from a baseline 

orientation of vertical or horizontal. Orientations from the baseline ranged from 0 to 32 degrees 

in either the clockwise or counterclockwise direction. 

Within each of the horizontal and vertical discrimination tasks, individual discrimination 

thresholds were determined using 2 opposing staircases. A two-down one-up staircase was 

modeled after the experimental design used by Shalev et al. (2018). Staircase A operated top-

down, starting at the furthest orientation from the baseline (32 degrees) and incrementally 

decreasing to the individual’s discrimination threshold. Staircase B operated bottom-up, starting 

at the nearest orientation from the baseline (0.5 degrees) and increasing to the individual’s 

discrimination threshold. Two consecutive correct answers on each staircase yielded a decrease 

to the next lowest orientation, unless the orientation had already reached the lowest rung on the 

staircase (0.5 degrees). One incorrect answer on each staircase yielded an increase to the next 

highest orientation. The staircases converged at the orientation where the participant had 

difficulty determining the correct orientation direction as either clockwise or counterclockwise. 

The staircases provided a two-measure approach to the discrimination threshold in order to 

increase the reliability of the measure.  

3.3 Procedure 

The present study consisted of 3 consecutive tasks and 2 follow-up questionnaires. The 

study measured individual discrimination thresholds for the CS+ and CS- before and after 

learning an association between the CS+ and an aversive outcome (Figure 2). Experimental 

instructions were given to participants prior to each task, as well as prior to each block within the 

discrimination tasks. Instruction tutorials were displayed prior to each task as pre-recorded 
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videos with example trials and voice narration in order to establish consistency across 

participants. 

 

Figure 2. Discrimination Learning Experimental Paradigm.  

3.3.1 Discrimination Task 1. The first discrimination task presented 2 blocks of 80 trials 

each for the CS+ and CS-, or 4 blocks total. During each trial, the Gabor appeared in a foveal 

presentation at the center of the screen for a duration of 100 milliseconds. Participants used the 

arrow keys to determine whether the presented Gabor had stripes oriented more clockwise or 

counterclockwise from the baseline orientation. Figure 3 illustrates example Gabors that are 

rotated clockwise and counterclockwise in the vertical and horizontal domains. Right and left 

arrow keys were used for the CS- trials. The right key indicated counterclockwise and the left 

key indicated clockwise from the 0-degree baseline orientation. Up and down arrow keys were 

used for the CS+ trials. The up key indicated counterclockwise and the down key indicated 

clockwise from the 90-degree baseline orientation. The CS+ and CS- circle assignments 

(horizontal or vertical) were counterbalanced across participants. After each Gabor was 

presented, the subject was given an unlimited amount of time to choose an arrow key. Once an 

arrow key was chosen, the subject received feedback from the fixation target at the center of the 

screen. The target temporarily changed color from white to green for a correct response or from 

white to pink for an incorrect response. The feedback disappeared before the Gabor in the next 

trial appeared on the screen.  
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Figure 3. Vertical Counterclockwise, Vertical Clockwise, Horizontal Counterclockwise, 
Horizontal Clockwise Gabor Stimuli Examples. Vertically Striped and Horizontally Striped 
circles were counterbalanced as CS+ and CS-. 
 

3.3.2 Learning Task. After the two discrimination blocks were completed for each 

stimulus, the learning task begun. The task consisted of 24 trials for each CS+ and CS-, or 48 

trials total. In this task, Gabor stripes were only oriented at the baseline vertical (90 degrees) or 

horizontal directions (0 degrees). Each participant was given $50 during the instructions for the 

learning task, which they were told was theirs to keep for the duration of the task. During each 

trial, the participant was shown a Gabor for 3 seconds and asked to indicate how likely they think 

it is that an “event” will follow the Gabor (Figure 4). Events were a loss in the amount of money 

that the participant is given, demonstrated in a “-$3.00” sign that appeared after the Gabor 

disappears. Participants chose their rating from a continuous scale of 1-9, where 1 indicated that 

an event is very unlikely and 9 indicated that an event is very likely. Participants were informed 

that they may choose any number along the continuous scale. Events occurred during 50% (12) 

of the 24 CS+ trials and 0 of the 24 CS- trials (Figure 5). The 50% event frequency was 

determined based on prior pilot studies as a rate that enabled gradual subject learning throughout 

the task. Therefore, each participant lost a total of $36 during the 48 trials out of the $50 

endowment. Each participant was left with $14 in earnings from the learning task.  
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Figure 4. Example of Learning Task Trial. Participants rate (1-9) the likelihood that an event 
will follow the circle. 

 

Figure 5. Within-Trial Learning Task Paradigm. 

Learning data was collected from each participant’s ratings for the likelihood that an 

event would follow the circle across the 48 trials of CS+ and CS-. We looked at whether and 

how these ratings changed over the course of the task to determine whether each participant 
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successfully learned to associate the CS+ with monetary loss. Temporal changes were 

determined by dividing the trials from the first half of the learning task (early acquisition) and 

the trials from the second half of the learning task (late acquisition). 

To measure the efficacy of the learning task, three learning indices were derived from the 

participant event likelihood ratings and acquisition phases. The difference in likelihood ratings 

between CS+ and CS- was calculated from the mean likelihood ratings. The first index (ACQ) 

measured how much the CS+ and CS- ratings differed during the late acquisition phase. Two 

learning indices were used to measure how much learning occurred for each subject within the 

CS+ and CS-. The second index (DCS+) quantifies how much CS+ likelihood ratings changed 

throughout the task by taking the difference between the mean values of CS+ in early and late 

acquisition. Similarly, the third index (DCS- ) quantifies how much CS- likelihood ratings 

change by taking the difference between the mean values of CS- during early and late 

acquisition.  

 
Index 1. ACQ = CS+ late acquisition – CS- late acquisition 

Index 2. DCS+ = CS+ late acquisition – CS+ early acquisition 

Index 3. DCS- = CS- late acquisition – CS- early acquisition 

 

3.3.3 Discrimination Task 2. The third task was identical in structure to the first 

discrimination task. Participants were shown a refresher instruction video prior to starting each 

of the CS+ and CS- blocks. Distinct discrimination thresholds were measured for the CS+ and 

CS- in the first and third experimental tasks. The change in orientation discrimination thresholds 

before and after aversive learning were recorded for each stimulus. 

Performance in the two discrimination tasks was measured by calculating four Mean Tilt 

values for each participant, measured in degrees. In addition to using a bidirectional staircase, 
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this method aimed to determine the orientation at which the participant had difficulty 

distinguishing the direction of the stimulus. Four Mean Tilt values were recorded for each 

participant, one for each CS+ and CS- domain before and after the learning task (preCS+, preCS-

, postCS+, postCS-). Mean Tilt values were calculated by deriving the mean orientation of 

Gabors from the last 10 trials of Staircase A and the last 10 trials of Staircase B and they are 

measured in degrees. This measure of discrimination was used to examine whether and how 

visual perception changed after the learning task. 

 3.3.4 State Trait Anxiety Inventory Y-1 Form. Immediately following Task 3, 

participants were administered the State Trait Anxiety Inventory Y-1 form as a self-reported 

measure of anxiety at the time of the task (Spielberger & Donald, 1971) using the online survey 

platform Qualtrics. The survey consists of 20 statements about how one feels at the present 

moment. Participants chose between answers of “not at all,” “somewhat,” “moderately so,” and 

“very much so” in response to each statement. S-anxiety scores can range from 20-80. A cutoff 

point of 39-40 was used to distinguish normal symptoms from clinically significant symptoms 

(Julian, 2011). 

 3.3.5 Post-Study Survey. Participants were administered a 4-question survey aimed to 

determine self-reported task comprehension and difficulty. The final question on the survey 

asked participants to report fatigue and hunger levels before and after the experiment. 

3.3.6 Additional Measures. Participant age, race, ethnicity, gender, height, weight, and 

highest education level were also collected. 

 3.3.7 Payment. During study recruitment, participants were informed that they would 

receive $10 compensation for completing the experiment with the opportunity to receive 

additional earnings during the experiment. The value of task earnings was left purposefully 
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ambiguous so that monetary losses throughout the aversive learning task felt tangible and 

important. Over the course of Task 2, participants lost $36 of the $50 endowment they were 

given. They were allowed to keep the remaining $14 from Task 2 in addition to the $10 

compensation, leaving each participant with a total sum of $24 from the experiment. Participants 

were only informed of their net earnings after the entire experiment was completed. 

 

IV. Results 

4.1 Learning Results 

Learning performance was measured by examining changes in participant likelihood 

ratings over the course of the 48 task trials. The early acquisition phase consisted of trials 1-24 

while the late acquisition phase consisted of trials 25-48. Figure 6 demonstrates one participant’s 

course of learning throughout the task and exemplifies a noticeable divergence in CS+ and CS- 

likelihood ratings during the late acquisition phase. Figure 7 illustrates the average likelihood 

ratings across all subjects for each of the 24 CS+ and 24 CS- trials. Mean CS+ and CS- ratings 

diverge quickly in the early acquisition phase. 
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Figure 6. Example of successful learning during task in Subject 610. CS+ and CS- likelihood 
ratings diverge during the late acquisition phase. 
 
   

 

Figure 7. Mean CS+ and CS- likelihood ratings across all subjects. Divergence between mean 
CS+ and CS- occurs prior to trial 5 in the early acquisition stage, indicating that the majority of 
participants learned quickly during the task. Error bars represent the standard deviation of 
participant likelihood ratings. 
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Subject learning during the learning task was quantified using three indices, ACQ, DCS+, 

and DCS- (Figure 8). Although there was a wide range of ACQ scores (10.58), most participants 

demonstrated learning through a divergence in their likelihood ratings for CS+ and CS- (M=3.82, 

SD=2.41). However, DCS+ (M=0.31, SD=1.61) and DCS- (M=-0.23, SD=0.92) values 

aggregated close to 0, indicating no substantial change in the mean likelihood ratings between 

the early and late acquisition stages for a majority of participants (Figure 8). 

 
Figure 8. ACQ, DCS+, and DCS- indices. Box plots demonstrate minimum, quartile, and 
maximum values of each index. Positive mean and quartile ACQ values demonstrated a 
significant divergence in likelihood ratings for CS+ and CS- across a majority of participants. 
 
4.2 Individual Differences in Learning 

Group differences and correlations were examined to determine the relationship between 

learning and gender, anxiety, and obesity. There were no significant differences in ACQ between 

males (M=4.12, SD=1.74) and females (M=3.61, SD=2.95), t(22)=2.07, p=0.65. S-anxiety scores 

varied across participants (M=41.63, SD=10.48). Between participants with normal S-anxiety 

scores (M=32.73, SD=4.56) and clinically significant STAI-Y1 anxiety scores (M=49.15, 
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SD=7.7), there was no significant difference in ACQ, t(22)=2.07, p=0.45. We also found no 

significant correlation between STAI-Y1 anxiety scores and ACQ, r(22)=0.11, p=0.59 (Figure 

9). 

 

Figure 9. ACQ score is negatively but not significantly correlated with ACQ. 

The results from the learning task demonstrated a trending significant difference between 

normal and overweight or obese individuals. Although the majority of participants in the 

experimental sample had BMI values within the normal range (BMI 18.5-24.9), there were two 

participants with BMI values within the overweight range (BMI 25.0-29.9) and one within the 

obese range (BMI³30.0). Between normal weight participants (M=22.23, SD=1.89) and 

overweight or obese participants (M=27.49, SD=2.60), we identified a trend towards a significant 

differences in ACQ scores, t(2)=4.30, p=0.08. More data are needed to verify the strength of the 

relationship between BMI and aversive learning with monetary outcomes, specifically from a 
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larger sample of overweight or obese individuals. However, we found no significant correlation 

between BMI and ACQ, r(21)=0.07, p=0.72 (Figure 10). 

  

 

Figure 10. ACQ Score is negatively but not significantly correlated with BMI. 

4.3 Discrimination Results 

 Discrimination performance was measured in Mean Tilt values for CS+ and CS- before 

and after learning for each subject (Figure 11). Subject 620 was excluded from all discrimination 

analysis because the discrimination accuracy values drifted around chance (0.5), or the accuracy 

of a blind guess. We found no significant differences in the Mean Tilt Values between or within 

stimuli (Figure 12). However, we found trending significance that CS+ discrimination improved 

after learning. Against our hypothesis that CS+ would yield higher Mean Tilt values than CS- 

after learning, there was no significant difference between the postCS+ and postCS-, t(44)=2.01, 

p=0.71. We also found the predicted result that there would be no significant difference between 

the preCS+ and preCS-, t(45)=2.01, p=0.31.  As expected, we found no significant difference in 
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Mean Tilt between preCS- (M=1.13, SD=0.51) and postCS- (M=1.06, SD=0.51), t(43)=2.01, 

p=0.67. However, against our hypothesis that postCS+ would have a greater tilt than preCS+, the 

results trended towards a significant difference between the preCS+ (M=1.37, SD=1.00) and 

postCS+ (M=1.02, SD=0.36), t(44)=2.02, p=0.11. More data must be collected to determine the 

strength of the relationship between preCS+ and postCS+ Mean Tilts. 

 

 
 
Figure 11. Each colored line represents the change in Mean Tilt for one subject in the CS+ or 
CS- tasks. The dashed black line represents the mean change in tilt values across participants. 
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Figure 12. There was no significant difference between the Mean Tilt values within or between 
CS+ and CS- across the pre- and post-learning phases across participants. 
 

We looked at the relationship between learning and discrimination performance by 

correlating subject ACQ Scores with the changes in Mean Tilt of CS+ and CS-, as well as with 

the difference between CS+ and CS- changes in Mean Tilt [(postCS+ – preCS+) – (postCS- – 

preCS-)]. The latter measure was aimed at controlling any differential changes in threshold that 

are due to improved discrimination task performance or fatigue. We expected to see a strong 

correlation between ACQ (successful learning) and a negative change in CS+ but no correlation 

with CS-. Contrary to our hypothesis, there was no significant correlation between ACQ and 

CS+, r(22)=0.13, p=0.55. However, as expected, there was also no significant correlation 
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between ACQ and CS-, r(21)=0.07, p=0.74. Lastly, we found no significant correlation between 

ACQ and the difference between CS+ and CS- changes in Mean Tilt, r(22)=0.16, p=0.45. 

4.4 Individual Differences in Discrimination 

Discrimination performances yielded no notable differences by gender, BMI, or state 

anxiety. There was no significant difference in the change in discrimination performance for CS+ 

(postCS+ - preCS+) between males and females, t(21)=2.08, p=0.92. There was also no gender 

difference in for the change in discrimination performance for CS- (postCS- - preCS-), 

t(21)=2.09, p=0.78. Neither state anxiety nor BMI seemed to impact changes in discrimination 

performance across the pre-and post-learning tasks. There was a trend towards a significant 

correlation between STAI-Y1 and change in Mean Tilt of CS+, r(22)=0.27, p=0.22. More data is 

needed to verify the impact of clinical symptoms on the change in CS+ Mean Tilt. However, 

there was no significant correlation between STAI-Y1 and change in Mean Tilt of CS-, 

r(22)=0.21, p=0.34. There was no significant correlation between BMI and change in 

discrimination of CS+, r(22)=0.08, p=0.71. There was also no evidence of a significant 

correlation between BMI and change in discrimination of CS-, r(22)=0.04, p=0.86. 

 

V. Discussion 

5.1 General Discussion 

 The hypothesized experimental outcome was that aversive learning would lead to 

decreased discriminatory ability. The results of the present study do not provide significant 

evidence supporting the hypothesized impact of learning on discrimination, but they do provide 

interesting insight into the development of future research on perceptual learning and in the 

clinical domains of anxiety disorders and obesity.  



  Thorndike 26 

Hypothesis 1 anticipated that within-subject discrimination thresholds would increase in 

the CS+ after learning to associate the CS+ with an aversive monetary outcome, with no increase 

in CS- discrimination threshold. The hypothesized effect was not apparent in the average Mean 

Tilt values across subjects, which decreased across both CS+ and CS-. On the contrary, the 

results indicated trending significance that CS+ discrimination improved (JND decreased) after 

learning to associate the CS+ with money loss. This unexpected outcome suggests that subjects 

are more attentive to and able to perceive changes in a stimulus after aversive learning. Subject 

discrimination may have improved as a result of heightened sensitivity of fear of the stimulus. 

More data from future iterations of the study are needed to confirm this result. 

The most salient explanation for why the results lacked significance is that subject 

performance on the discrimination tasks exceeded our expectations. Prior studies that have used 

Gabor orientation to measure visual perception have presented Gabors at a peripheral location on 

the screen, rather than a foveal location (Grubb et al., 2013; Grubb et al., 2015). The foveal 

presentation in the present study made the Gabor more accessible in the visual field because 

subjects did not have to search for the Gabor’s location in addition to determining its direction. 

Therefore, many participants’ discrimination thresholds neared 0.5 degrees, which was the 

lowest possible orientation on the discrimination staircases. Because of this, participant 

discrimination thresholds may not have been an accurate measure of JND. Many participants 

may have had thresholds below 0.5 degrees if the staircases extended to lower orientation values. 

Without accurate JND measures, it is impossible to compare participant perceptual abilities 

before and after learning. Inaccurate measures of subject perceptual thresholds are a likely 

explanation for the lack of support for Hypothesis 1. However, limitations to the present study 

that are addressed later on provide many other explanations for the results. 
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 Hypothesis 2 facilitated exploratory freedom for investigating relationships between 

demographic measures collected in the study and performance on the learning and discrimination 

tasks. These relationships are best considered through examining the clinical applications of the 

present study’s results. 

5.2 Clinical Applications 

 The exploratory analyses conducted in this study provide novel insights about 

applications of learning and discrimination to future clinical research on anxiety disorders and 

obesity. In agreement with past research, the present study identifies trends of significance 

between anxiety symptoms and impaired discrimination, as well as between obesity and 

impaired associative learning. 

5.2.1 Anxiety Disorders. Discrimination learning performance has been linked to the 

presence and development of anxiety symptoms and disorders. Overgeneralization of perceptual 

stimuli has been pathogenically linked to anxiety disorders in both non-discriminative and 

discriminative fear conditioning tasks (Dunsmoor et al., 2011; Dunsmoor & Paz, 2015; Dymond 

et al., 2014; Lissek et al., 2012; Struyf et al., 2015). Overgeneralization results from impaired 

discrimination learning between threatening and safe signals, contributing to the development of 

anxiety symptoms (Lissek et al., 2012). In dangerous contexts, generalization can result from 

choice behavior, perceptual changes, or an interaction of these two variables (Laufer & Paz, 

2016). Preliminary research on auditory aversive learning has found that overgeneralization 

derives from perceptual changes (Schechtman et al., 2010). The effect of these perceptual 

changes have been observed as modulated representations of the stimulus in the amygdala and 

prefrontal cortex (Laufer & Paz, 2016). Additionally, aversive discrimination learning and 

generalization have been shown to predict anxiety symptoms in a clinical population at a six-
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month follow-up (Lenaert et al., 2014). This result signifies the importance of individual 

differences in learning and discrimination as predictors of anxiety disorder development. 

Discrimination behaviors observed in this study may have clinical implications in the 

treatment of individuals with anxiety symptoms or disorders. For example, this discrimination 

learning research might shape the development of exposure therapy for anxiety disorders that is 

tailored to treat the degree of an individual’s impaired discriminatory ability. The present study 

examines how aversive learning impacts generalization of visual stimuli. The results provide 

preliminary evidence that there is a relationship between state anxiety measures and changes in 

perceptual discrimination after aversive learning. However, this trending significant correlation 

necessitates more data collection in order to determine the true nature of this relationship. Since 

the study fails to accurately measure individual JND, it is likely that future iterations of this 

study will reveal more reliable correlational evidence between perceptual changes and anxiety. 

Additionally, the results provide no evidence that clinical symptoms of anxiety alter an 

individual’s aversive learning ability, as demonstrated in the past literature. 

Although the present study does not utilize brain imaging methodology to identify 

relevant regions implicated in discrimination learning, it opens the door for further research on 

whether the overgeneralization behaviors seen in prior studies can translate into the domains of 

visual perception and monetary loss. The results of the present study may spark future 

investigation of how overgeneralization is influenced by learning associations with negative 

outcomes for individuals with clinical symptoms of anxiety or with anxiety disorders. 

5.2.2 Obesity. The present study’s investigation of aversive learning has potential 

applications in the field of obesity and decision-making. Reward circuitry dysfunction, 

specifically impaired dopaminergic pathway regulation, is thought to play a significant role in 
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obesity and binge eating (Volkow et al., 2011). Individual differences in associative learning and 

generalization with food (but not monetary) outcomes have been discovered in obese women 

(Zhang et al., 2014). Zhang et al. identified impaired learning and discrimination in obese 

women after they learned associations between a cue and a food reward. They observed 

unimpaired learning when monetary rewards were used. Zhang et al. examined associative 

learning using rewards but not aversive outcomes.  

The present study provides a novel preliminary investigation of aversive learning in the 

domains of visual stimuli and monetary outcomes. The results of the present study provide 

preliminary evidence that BMI is correlated with impaired aversive learning using monetary 

losses. Although Zhang et al. used a reward learning paradigm that revealed no correlation 

between monetary rewards and BMI, they never tested an aversive learning paradigm. The 

present study suggests that impaired learning in obese individuals might not be restricted to the 

domain of food rewards, but they also permeate the domain of monetary loss as well. This result 

has never been identified in the past literature, and could have important implications in 

understanding the behavior of individuals with obesity. However, the small sample of three 

overweight or obese participants requires much more data collection within this population to 

confirm this relationship. 

Future research comparing reward and aversive learning paradigms between obese and 

healthy controls might provide further insight into the relationship between learning behaviors 

and obesity. Modifications of the present study to compare learning with money and food 

outcomes would provide further insight into the relationship between obesity and perception. A 

later iteration of these methods might include a within-subject comparison of associative learning 
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in food rewards, monetary rewards, and monetary losses would contribute to the larger clinical 

investigation of decision-making, gender, and obesity. 

5.3 Limitations 

5.3.1 Generalizability. It is important to recognize the small sample size of the present 

study. Additionally, 18 of the 24 participants were Yale University students, indicating a higher 

education level and suggesting a higher IQ than the average member of the population. These 

sample-specific limitations may restrict our ability to generalize the results to the population at 

large. Furthermore, there is uncertainty about the generalizability of any laboratory research on 

visual perceptual learning to real world situations (Lu et al., 2011). 

5.3.2 Explicit Learning Measures. To measure learning in the present study, we use the 

explicit measure of asking participants to rate the likelihood that an event will follow the circle in 

each trial of the task. Successful associative learning is measured by a significant divergence in 

ratings for the CS+ and CS-. The present study does not use any implicit measures of learning 

such as pupil dilation or skin conductance responses. While implicit learning measures could 

offer new insight on participant learning, implicit learning measures can be small in effect size 

and noisy when applied to Pavlovian conditioning tasks (Pietrock et al., 2019). 

5.3.3 Discrimination Task Effects. One limitation of analyzing discrimination results is 

that it can be ambiguous to distinguish task effects from true experimental outcomes. One task 

effect might be the onset of fatigue throughout the experiment, which would negatively impact 

performance in Task 3. Another effect might be task improvement such that an individual’s 

discrimination ability increases in Task 3 due to the participant having more practice than when 

they started Task 1, improving Task 3 discrimination performance. To eliminate these 

differential changes, we tested both CS+ and CS- performance after the learning task. Therefore, 
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threshold changes due to task effects would likely be observed consistently across CS+ and CS-, 

while changes due to aversive learning would only be observed for CS+. 

5.3.4 Self-Reported Measures. Self-reported measures of state anxiety, height, and 

weight limit the accuracy of exploratory analyses that correlate task performance with individual 

BMI or state anxiety. However, the exploratory nature of the present study does not necessitate 

objective measures of BMI and anxiety. In future studies, self-reported inaccuracies might be 

resolved by measuring participant height and weight on site after completing the experiment and 

conducting an implicit measure of anxiety, such as the Implicit Association Test – Anxiety 

(Weck et al., 2010).  

5.4 Future Directions 

There are many possible future directions for this study in basic scientific and clinical 

domains. Primarily, the present study ought to be modified so that the discrimination tasks 

accurately measure participant JND in order to sufficiently determine whether aversive learning 

with money loss can impact perception. This could be accomplished by lowering the contrast of 

the stripes on the Gabor, using a shorter Gabor presentation time, or lowering the staircase 

orientation range below 0.5 degrees.  

Further examination of the trending significant relationship between symptoms of anxiety 

and discrimination performance after aversive learning would provide stronger evidence for the 

present study’s findings. A larger follow-up study should include equal representation from 

individuals with clinically significant anxiety symptoms and those without. It would be useful to 

compare the causes of visual discrimination changes by expanding the design to include both 

reward and aversive learning tasks. 
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Similarly, the trending significant correlation that we found between BMI and impaired 

aversive learning with monetary losses should be further investigated. A larger follow-up study 

could recruit an equal number of individuals that classify as normal weight and overweight or 

obese to ensure adequate representation for accurate population comparison. Additionally, 

associative learning ability could be observed for reward and aversive learning using both 

monetary and food rewards. This design would expand the work of Zhang et al. to determine 

whether overweight or obese individuals show impaired associative learning when aversive 

outcomes are involved. 

In the domain of data analysis, the present study would be improved by adding a second 

method of determining individual discrimination performance to compare to the first method of 

identifying subject Meant Tilt values. A second approach to discrimination could fit a 

psychometric function to each CS+ and CS- domain before and after the learning task to produce 

a Threshold value, which is a point on the curve where the participant would get 75% of trials 

correct. In combination with the first method, the psychometric approach would provide a two-

part check to ensure accurate measurement of discrimination performance (JND). 

The present study explores the possibility of applying a visual aversive learning with 

monetary loss paradigm to a variety of fields of research. Future directions for the present study 

may focus on any number of these research routes with the ultimate goal of developing a 

concrete understanding of learning and discrimination behaviors. 

 

VI. Conclusion 

In a society where anxiety disorders and obesity are two of the most increasingly 

prevalent health conditions, it is critical that we zoom in to identify the psychological and neural 
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mechanisms that drive these behaviors (Raghupathi & Raghupathi, 2018). Understanding the 

functionality and malleability of human learning and discrimination abilities will inform the 

future development of improved prevention and treatment for these health conditions. The 

present study does not provide evidence that supports the hypothesized outcome that aversive 

learning with monetary losses alters visual perceptual discrimination abilities. Our findings 

reveal unanticipated weaknesses in the present study which can be addressed in future iterations 

to obtain a successful and accurate measure of visual aversive learning with monetary loss. 

However, the present study sheds light on the implications of learning and discrimination 

behaviors in patients with anxiety disorders, obesity, or both. It is important that future research 

on perceptual learning builds on the successes and failures of the present study in order to 

contribute novel evidence to the field and ultimately improve clinical outcomes. 
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