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Abstract

Existing research on how people learn language has significantly impacted the

long-standing nature vs. nurture debate. Evidence for innate linguistic knowledge often

derives from certain grammatical properties that are invariant across languages. A stronger

motivation, however, draws from the lack of linguistic data displaying these properties in a

child’s input, a phenomenon known as poverty of the stimulus. This case is often explained

by a grammatical parameter : a single dimension of variation in a language’s grammar that

gives rise to correlated grammatical properties. The notion of grammatical parameters has

been used to explain how English speakers can learn the impossibility of a sentence like (1)

(here, * is used to signify a sentence that is ungrammatical).

(1) *The man who you think that saw me just arrived.

Holmberg and Roberts [14] argue that examples with the structure in (1) are too

infrequent in a child’s linguistic input to be useful to a child during learning. Grammatical

parameters account for this issue, since a child could learn the impossibility of sentences

like (1) by determining the other grammatical properties that hold in her language.

In this paper, I investigate the extent to which the impossibility of sentences like (1)

can be explained by a more superficial alternative. Perhaps children understand that a

complementizer (like that) followed by a finite verb (like saw) is dispreferred in English,

and consequently judge sentences containing sequences such as that saw as ungrammatical.

I use statistical models to test whether such a hypothesis could hold and I find that such

models are able to succeed in learning that-trace contexts on the basis of their input. This

finding brings into question widely held assumptions about the unlearnability of linguistic

structures from primary data. If an understanding of grammar is to be motivated by

questions of learnability, then these questions must themselves be subjected to serious

investigation.
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1 Introduction

1.1 Terminology

To begin a discussion of research in linguistics, it would be helpful to have brief

explanations for concepts which are somewhat esoteric, but extremely useful for my project.

1.1.1 Syntax

Syntax is the study of how words and phrases combine to create well-formed sentences

of English. Syntax does not study the meaning of sentences. One famous example of a

sentence that is syntactically well-formed but utterly meaningless is attributed to Noam

Chomsky,

(2) Colorless green ideas sleep furiously.

Syntax tells us that this is a well-formed sentence of English because the constituents

are well-formed. A constituent of a sentence is a word or group of words that functions as a

single unit within a larger hierarchical structure. The constituents of the sentence in (2)

are a noun phrase (colorless green ideas) and a verb phrase (sleep furiously). Syntax rules

for English tell us that a sentence can be formed by combining a noun phrase with a verb

phrase. Additionally, within each constituent, the adjectives (colorless and green) precede

the noun (ideas), and the verb (sleep) is followed by an adverb (furiously). Thus speakers

of English find this sentence perfectly acceptable, or well-formed. Typically, syntacticians

would write the example in (2) in a way that better represents the underlying hierarchical

structure, as in (3):
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(3) S

NP

Adj
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green
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sleep

Adv

furiously

This representation of a sentence’s structure is called a syntax tree, because it

graphically represents the various syntactic constituents involved in the construction of a

sentence.

1.1.2 Long-distance dependencies

Some sentences contain two words or phrases that are related to (or dependent on)

each other but are separated by other lexical items.1 A good example of a linguistic

structure that gives rise to long-distance dependencies is a relative clause. A relative clause

is a phrase that modifies, or adds information to, a noun. For example, in (4), the relative

clause is that likes to eat at McDonald’s, because it clarifies which man the speaker is

referring to.

(4) The man that likes to eat at McDonald’s sat by me.

There are actually two types of long-distance dependencies that stem from (4). The

first I will mention is the relationship between the subject noun the man and the verb with

which it agrees sat. This type of relationship is considered a long-distance dependency

because there are an unbounded number of words that can intervene. However, when this

sentence is represented by a syntax tree (5), we see that there is actually a structural

locality between the man and sat (that is, they are both near the top of the tree).
1
A lexical item is a word, a part of a word, or a group of words that forms the basic elements of a

language’s vocabulary.
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The other type of long-distance dependency in the above example is the relationship

between the relative clause head the man and its associated verb eat. In the syntax tree in

(5), we see that if we kept adding words between the man and eat, the structural distance

between the two would increase (for example, if the sentence were instead The man that

you think I said likes to eat at McDonald’s sat by me, then the structural distance between

the man and eat has grown, while the structural distance between the man and sat has not.

Another example that illustrates the idea of subject-verb dependencies in relative

clauses can be seen in what is known as center embedding.

(6) The cat(1) the dog(2) chased(2) loves to hunt mice(1).

In (6), the first noun phrase, the cat, is semantically dependent on the last verb

phrase, loves to hunt mice, and the second noun phrase, the dog, is semantically dependent
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on the second-to-last verb phrase, chased. The reader has to keep track of the original

subject of the sentence (the cat) so that when she reaches loves to hunt mice, she can

determine that it is the cat that loves to hunt mice. Center embedding is found in the

syntax of many human languages [15], and our ability to understand sentences with a

center embedded structure relies on our ability to keep track of long-distance dependencies.

Other common examples of long-distance dependencies include topicalization (7a),

it-cleft (7b), wh-question (7c), embedded wh-question (7d), and of course, relative clauses

(7e).

(7) Examples of long-distance dependencies [30]

a. Ann, I think he likes.

b. It is Ann that I think he likes.

c. Who do you think he likes?

d. I wonder who you think he likes.

e. I saw the woman who I think he likes.

A gap occurs when part of a syntactic constituent (part of a branch in a syntax tree)

is missing. For example, the sentence fragment I think he likes has a gap after likes,

which would be filled by Ann in the above example.

The kinds of information that readers have to keep track of while processing sentences

like those in (7) are also known as filler-gap dependencies, because a word in the beginning

of the sentence will fill in a gap that occurs later. As a more concrete example, consider the

sentence in (8):

(8) Which student
i

[did you ask (t
i

) Mary about t
i

]?

In this example, there are two possible gap sites that which student can fill:

immediately following ask and immediately following about (the gap sites are represented

by the notation ti, as is common in representing such structures). That is, while reading,
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the reader could stop after which student did you ask, having filled the gap that student

created. Since the sentence does not end there, however, the gap is filled after about. Thus

the filler-gap notation is simply a useful means by which we can understand long-distance

dependencies.

For the purposes of my research, we will be interested in the filler-gap dependency

found in relative clauses.

1.1.3 Null-subject languages

A null-subject language is a language that allows sentences to e↵ectively drop their

subjects. English is not a null-subject language, as evidenced by (9b), since removing the

subject of (9a) results in an ungrammatical sentence.

(9) a. He will come.

b. *; will come.

Other languages, like Spanish or Italian, however, do permit sentences to have null

subjects. That is, a sentence like that in (10) means he will come in English, but the

sentence is grammatical without a subject.

(10) verrà.

Null-subject languages are thus just those languages which allow sentences without sub-

jects.

1.1.4 Probability

One important concept from probability theory that we will use frequently in this

paper is conditional probability. The probability of some event E1 is said to be conditional

on the probability of another event E2 if the probability of E1 given that you know E2 is

di↵erent than the probability of E1 in the absence of such knowledge. More formally,
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p(a|b) = p(a&b)

p(b)

A good example to illustrate this idea is that of determining whether you should bring

an umbrella when you leave your room for the day. The likelihood that you will need your

umbrella is dependent on how likely it is to rain that day.

Let’s assume that if it is raining, the probability that you will need your umbrella is 1.

If it isn’t raining, the probability that you will need your umbrella is 0. These can be

written in the following way2:

p(umbrella|raining) = 1

p(umbrella|not raining) = 0

Now, if we know that the probability that you will ever need your umbrella is, say,

0.3, we can write the following:

p(umbrella) = 0.3.

We see that p(umbrella) is di↵erent than p(umbrella|raining) and

p(umbrella|not raining), so we say that your need to bring an umbrella is conditional on

whether it is raining on a given day. p(umbrella|raining) is therefore said to be the

conditional probability of you needing an umbrella given that it is raining.

In general, p(a|b) is called the conditional probability of a given b. Conditional

probabilities are useful when we are considering events or occurrences of words that are

dependent on other events or other occurrences of words. These probabilities will be

extremely useful in understanding how computational models learn from linguistic data.
2
The notation p(a|b) represents the probability of a given that b is true.
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1.2 Learnability

1.2.1 Previous work

The question of whether language understanding is innate in humans has been long

debated ([18], [21], [1]). Noam Chomsky [5] was one of the first linguists to suggest, in the

1960s, that language learning may be innate, hypothesizing that children have a universal

grammar (UG) that provides an innate basis for language learning. One of the key

components of Chomsky’s UG theory is the idea of poverty of the stimulus. He argues that

there is a large di↵erence between the linguistic input (sentences and phrases) that children

hear, and their resulting vast linguistic knowledge. For example, Chomsky’s Colorless green

ideas sleep furiously sentence demonstrates (at least when this example is presented to

someone for the first time) that there are a great many sentences that English speakers do

not hear but which they nonetheless judge as perfectly acceptable.

Another example that provides motivation for Chomsky’s poverty of the stimulus

argument is the following ungrammatical sentence:

(11) *What did John meet a woman that hates?

Chomsky’s poverty of the stimulus argument states that, since people cannot be

learning the ungrammaticality of sentences on the basis of the sentences they see and hear,

they must have some innate mechanism which allows them to see an unfamiliar structure

like (11) and judge it as a badly-formed sentence of English.

In fact, the sentence presented in (11) is an example of a linguistic phenomenon called

an island e↵ect. Filler-gap dependencies like that discusssed in (7) are blocked in a number

of syntactic environments. The precise environments in which filler-gap dependencies

cannot occur are not important for the present discussion; it is just important to note that

these dependencies cannot cross the boundaries of relative clauses, as in the example in

(11). Island e↵ects are so-named because one cannot escape from the syntactic

environments in which filler-gap dependencies are blocked.
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The main point to take away from our discussion of island e↵ects is that these

sentence structures cannot occur in English. Since learners of English never encounter

these types of sentences, yet they nonetheless uniformly judge them as ungrammatical,

island e↵ects provide a strong motivation for innate linguistic mechanisms of the sort

Chomsky hypothesized in his poverty of the stimulus argument.

The idea that poverty of the stimulus necessitates the existence of innate linguistic

structures gave rise to the notion of a grammatical parameter : a single dimension of

variation in the language’s grammar that gives rise to multiple correlated grammatical

properties. These parameters support what Chacón et al. [3] call indirect learning : if one

of the correlated properties P is detectable from a child’s linguistic input, while another Q

is not, a child can establish whether Q holds by determining whether P does. One of the

most famous examples of a parameter is Rizzi’s [26] null subject parameter, which states

that a single dimension of variation in a language determines whether that language

permits null subjects, free inversion3, and violations of the that-trace filter.

The that-trace filter is a constraint on the placement of a complementizer relative to a

subject gap. To help illustrate the nature of this e↵ect, consider the examples in (12).

(12) Sentences with and without that-trace

a. Who
i

do you think that John saw t
i

?

b. *Who
i

do you think that t
i

saw John?

The null subject parameter accounts for why languages like English do not permit null

subjects, free inversion, or violations of the that-trace filter, but languages like Spanish or

Italian do.

The existence of a null subject parameter would be helpful in explaining how English

speakers are able to learn that sentences like (12b) are ungrammatical. Work by Colin

Phillips [24] and Dustin Chacón [3] has shown that examples with the structure in (12b)

3
Languages with free inversion allow subjects to be placed after the verb phrase in declarative statements.

For example, Italian permits sentences like Ha telefonato ieri Gianni, which in English would be has called
yesterday John. So Italian (like Spanish) is a language with free inversion, and English is not.
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but without the that (so as to make them grammatical) are so rare in both English and

Spanish that it seems highly unlikely that people are able to learn about that-trace

violations on the basis of their linguistic input. Under the assumption that Rizzi’s null

subject parameter exists, however, a child could simply infer the impossibility or possibility

of (12b) from the presence or absence of null subjects in her language.

1.2.2 Our approach

While innate grammatical parameters are potential explanations for di↵erences in

grammaticality judgments of that-trace sentences across languages, one might imagine that

the determination of ungrammaticality of sentences like (12b) is made on a more superficial

basis. At the very least, Occam’s razor would suggest that we consider the possibility that

an explanation for learnability might be simpler.

One such explanation treats the impossibility of (12b) as a violation of a constraint

relating to the adjacency of a complementizer and a gap ([23], [2], [6]). Salzmann et al. [28]

argue that the explanation is even simpler: perhaps in German (another language that has

that-trace e↵ects), a complementizer (that) cannot be adjacent to lexical content that

would typically follow a gap (the finite verb). If the perceived anomaly of that-trace

violations is due to the presence of a that-finite verb sequence, a child who had never

experienced such a sequence might disprefer sentences like (12b) on the basis of her

experience. On the other hand, if a child’s language does allow a complementizer to be

followed by a finite verb, then examples like (12b) would be judged as acceptable.

Importantly, this explanation also accounts for the properties in Rizzi’s null subject

parameter. If a language allows null subjects and free inversion, then it will also contain

examples involving complementizer-finite verb sequences, thereby providing the evidence

necessary for such sequences to be judged as acceptable. Such an explanation also accounts

for what is called the “adverb e↵ect” [7]:

(13) a. *This is the tree
i

that I said that t
i

had resisted my shovel.
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b. This is the tree
i

that I said that just yesterday t
i

had resisted my shovel.

English speakers reliably find sentences like (13b) more acceptable than sentences like

(13a). Under our superficial explanation, this is because the adverb eliminates the

that-verb sequence.

The proposed explanation faces a problem from subject relative clauses, like that in

(14), which do contain that-finite verb sequences, yet are judged to be acceptable.

(14) The man that saw me just arrived.

Pullum and Scholz [25] suggest that the di↵erence lies in the word preceding the

complementizer. In (13a), we see a sequence of V-that-finite V, whereas in (14), we see a

sequence of N-that-finite V. Since children do not experience sequences of V-that-finite V,

such sequences will be judged as unacceptable, while sequences of N-that-finite V will be

judged as acceptable, since N-that-finite V sequences do occur in a child’s linguistic input.

In my experiments, I train computational models on collections of linguistic data

called corpora and test whether the models can learn that sentences violating the

that-trace filter should be less probable than sentences that do not violate the filter. The

models certainly do not start out with any innate grammatical parameters, so if they are

able to successfully di↵erentiate between that-trace contexts and non-that-trace contexts,

this would mean that some computational method was able to learn the that-trace e↵ect

on the basis of its linguistic input. This conclusion would seriously undermine the poverty

of the stimulus motivation for the null subject parameter, which crucially assumes that the

lack of sentences with the structure in (12b) and (13a) in a learner’s input prohibits her

from learning a property such as the that-trace e↵ect.

12



1.3 Computational Models

1.3.1 N-gram models

N-grams are sequences of n adjacent words. For example, the sentence “the cat chased

the mouse” consists of the bigrams4: “the cat”, “cat chased”, “chased the”, and “the

mouse.” Typically, n-gram models will also keep track of whether a word occurs at the

beginning or end of a sentence, so the bigrams “[beginning] the” and “mouse [end]” would

likely also be included. An n-gram model (in our example, a bigram model) assigns

probability to the entire sequence of words by computing the product of the probabilites of

the constituent bigrams.

N-gram models typically also incorporate some kind of smoothing mechanism for the

data. This means that if “mouse chased” never occurred in any of our input sentences, the

model won’t simply assign it a probability of 0 (this probability would in turn get

multiplied by others to compute the probability of the entire sequence, yielding an entire

sequence probability of 0 without smoothing). The models then use these smoothed

conditional probabilities to compute probabilities of new sentences. So if an n-gram model

encountered the new sentence “the cat chased the dog,” the model is likely to assign it a

higher probability than the sentence “chased dog cat the the”, because in the latter case,

the model would never have seen any of those pairs before.

N-gram models have been shown to perform extremely well on word prediction tasks

when trained on large amounts of data [13]. However, they do not seem to adequately

capture many properties of language that many linguists believe are important in the

modeling of language. Chomsky [4] points out that many grammatical sequences will

contain unbounded dependencies, which will be judged as unacceptable by n-gram models.

Certain statistical models that allow for abstraction of words into classes [22] can avoid

such problems, but they must be structured correctly. We explored the viability of this

4
A bigram is an n-gram where n = 2. If n = 1, this is called a unigram, and if n=3, this is called a

trigram. When n > 4, we refer to the n-gram by the number n (i.e., when n=4, this is a 4-gram).
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approach in Study 1 and Study 2. Given that we want to determine whether

grammaticality judgments correspond to the prohibition of a V-that-V sequence, n-gram

models do not seem unlikely to produce this result. However, since n-gram models can only

look at the previous n words of an input string, we predict that n-gram models will not be

able to capture some of the specific long-distance dependencies found in that-trace

sentences. We show that a more sophisticated model (called a simple recurrent network),

which can encode information from a sentence that happened many words ago, is better at

capturing these dependencies.

1.3.2 Neural Networks

In the late 1980s and early 1990s, computational linguists started exploring the

success of deep connectionist models. Connectionist models were thought to encode more

sophisticated information about the distributions of words than n-grams because they did

not just consider the n words that occurred before any given word, but rather they

represented each word as a vector, and combined these word vectors in various ways to

better model the linguistic data.

Neural networks traditionally consist of an input layer, an output layer, and

(sometimes) a hidden layer. The inputs to a neural network model are boolean values,

usually representing whether a given variable is active or not. For example, in the case of

language modeling, an input of 1 would represent a word that was being processed, and an

input of 0 would represent a word that was not currently being processed. These boolean

inputs then are multiplied by weights and connected to nodes in the hidden layer, which

are in turn connected to nodes in the output layer. The weights start out at some random

initial value before the network has been trained, they change while being presented with

training sentences, and training continues until they converge (no longer change). The

output nodes usually have boolean values as well, and they obtain a value of 1 if their

input exceeds some specified threshold value (which can also change during training), and a
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value of 0 if their input is less than the threshold value. As these models iterate through

the training data, the output thresholds and the weights from inputs to the hidden units

and from the hidden units to the output units are adjusted when the actual output does

not match the desired output.

1.3.3 Simple Recurrent Networks

Elman [9] was the first linguist to conceive of a specific type of neural network model

called a simple recurrent network, or an SRN. These networks improved upon the success

of traditional neural networks at representing sentences by including a means to represent

the “context” of the words presented as input. That is, the model had a component that

was meant to represent short term memory. SRNs can detect similar histories of words,

which allows for e�cient representations of variable-length patterns.

In fact, SRNs have been shown to be extremely e↵ective in lots of natural language

tasks. For example, trained SRNs can implement computational structures such as stacks

or queues ([27], [12], [15]), which n-grams cannot represent. Additionally, SRNs have been

able to successfully extract grammatical regularies such as subject-verb agreement,

filler-gaps [10], and anaphora5 [11]. However, these grammatical regularity extractions were

performed on hand-constructed data, rather than recordings of natural spoken or written

language. Nonetheless, these results are promising and they suggest that SRNs might be a

useful tool for modeling natural language. We will attempt to measure whether SRNs can

capture these regularities when trained on natural language corpora.

We will explore a model based on Elman’s SRN architecture [9]. This architecture

includes four distinct layers of units. It has an input and output layer, which both contain

units corresponding to words in the vocabulary. Inputs are encoded by giving the word

occuring at time t an activation of 1, and all other units activations of 0. A softmax

5
Anaphora is the replacement of a word used earlier in the sentence with another word, to avoid repetition.

It also includes the problem of determining the possible meaning of forms like pronouns and reflexives given

the context in which it occurs. An example is I like taking long walks on the beach and [so does he] instead
of I like taking long walks on the beach and [he likes taking long walks on the beach, too].
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activation function is used at the output, which ensures that the output vector can be

interpreted as a probability distribution over the next possible words.

When a word is fed into the network, the input units send activation to the hidden

units, and these are in turn sent to the output units. In addition, at each time step, the

hidden units’ activations are copied to a context layer, and these units provide additional

input to the hidden units at the following time step. Thus, hidden unit activation at time

step t contributes to the input at time step t+ 1, which thereby contributes to the

network’s prediction for the word at time t+ 2.

This architecture is useful for representing words with long-distance dependencies

because information about previous time steps can accrue in the hidden unit representation

and can a↵ect the network’s predictions for subsequent input words. All of our networks

were trained using a backpropogation through time of 6 steps, and convergence of the

hidden unit weight matrices was reached between 11 to 15 iterations through the training

data. We varied the number of hidden units, and made use of an output layer factorization

technique described by Mikolov et al. [20], dividing the input into varying numbers of

classes in order to speed up training.

2 Study 1: Word Distributions

Our first study explored whether an n-gram model or a recurrent neural network

model could reliably learn the di↵erence between sentences that violated the that-trace

e↵ect in English and sentences that did not. Both the n-gram and the recurrent neural

network models use a surface-based (not accounting for linguistic structure) approach to

try to learn the that-trace e↵ect. We first train the networks on a large amount of

linguistic data and then test them on fragments of a sentence like in (15).

(15) The man who you think that

Both models will then tell us the probabilities of all possible next words. Our hope is
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that in that-trace sentences, the net probabilities for the next word being a verb are much

lower than in sentences that do not contain a that-trace.

We did the same kind of training and testing for other models with Spanish data.

Since Spanish speakers are not sensitive to the that-trace e↵ect, we should not see a

significantly low probability for verbs following that in sentences like (15).

Table 1 shows the parameters for the models we used. RNN models can have varying

numbers of hidden units and classes, which a↵ect training speed and accuracy, so we

attempted to identify a good set of parameters by trying several di↵erent kinds, which we

report in the table.

name type corpus language hidden units classes
E1 RNN Europarl English 150 100
E2 RNN Europarl English 200 100
E3 RNN Europarl English 250 100
E4 RNN Europarl English 300 100
C1 RNN COCA English 100 200
C2 RNN COCA English 150 200
C3 RNN COCA English 200 200
C4 RNN COCA English 100 100
C5 RNN COCA English 500 50
C6 RNN COCA English 500 100
C7 RNN COCA English 500 200
C8 RNN COCA English 1000 50
NE N-gram Europarl English
NC N-gram COCA English
S1 RNN Europarl Spanish 150 100
S2 RNN Europarl Spanish 200 100
NS N-gram Europarl Spanish

Table 1: All the models used in our study.
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2.1 Task I: Subject-Verb Agreement

2.1.1 Methods

Task I explored the extent to which n-gram and RNN models could learn subject-verb

agreement. I created a 4-gram model using the SRILM toolkit [29], with Katz backo↵6 and

Good-Turing discounting.7 For the RNN model, I used the RNNLM toolkit produced by

Mikolov et al. [19], with an initial learning rate of 0.1 and varying numbers of hidden units

and classes, which are shown in Table 1. One n-gram model and four RNN models were

trained on the English section of the Europarl corpus of European parliamentary

proceedings [16], and one n-gram and two RNN models were trained on the Spanish section

of the corpus. These corpora consisted of approximately 50 million words and 2 million

sentences. Additionally, one n-gram model and eight RNN models were trained on the

Corpus of Contemporary American English [8], which contains approximately 500 million

words of English text equally divided between spoken, fiction, popular magazines,

newspapers, and academic text sources.

These two corpora represent two very di↵erent kinds of linguistic data. The Europarl

corpus contains longer sentences with certain kinds of jargon (parliament, commissioner,

etc.) appearing more frequently than they would in the COCA corpus, which has a more

balanced ratio of text sources. However, there is some concern that the COCA corpus

sources are too di↵erent, so it might be hard for models to learn generalizations from them.

That is, models could learn something about newspaper text, but when presented with

fiction, have to change their weight matrices.

The models were then tested on variations of the prompts in (16) and (17)8:

6
Katz backo↵, in our 4-gram model, estimates conditional probabilities of words given the 3 words that

come before it. If, however, we encounter a sequence of 4 words that the model has not seen very often (or at

all), Katz backo↵ then estimates the conditional probability of the 3-gram (i.e. the probability of the word

given the 2 words that precede it).

7
Good-Turing discounting ensures that n-grams we have never seen before have some probability mass

by comparing them to words we have only seen once before and then readjusting the probabilities for items

we have seen one or more times.

8
These prompts, and those in subsequent tasks, were chosen by myself and my adviser, taking into account

where singular and plural verbs should appear, and which kinds of verbs (think, say) occurred frequently
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(16) Test A for subject-verb agreement

a. the man who you think

b. the men who you think

(17) Test B for subject-verb agreement

a. the man who you saw

b. the men who you saw

In English and Spanish, we expect a model that has learned something about

subject-verb agreement to assign higher probabilities to singular verbs following the prompt

in (16a) and (17a), and higher probabilities to plural verbs following the prompt in (16b)

and (17b). The last word in each prompt also has an e↵ect on the possible next word.

That is, saw can be followed by an object pronoun (like me, him, or her) but not a subject

pronoun (like I, he, or she), while the opposite is true for think. Thus the probability

distributions for verbs following both kinds of prompts will likely be di↵erent. We expect,

though, that the relative probability of singular verbs with respect to plural verbs is much

higher in the (a) case of both (16) and (17), and is much lower in the (b) case.

There are 32 prompts for (16a)-type sentences chosen from the following template:

{the man, the person} who {you, he, she, they} {think, thought, say, said} and 32

prompts for (16b)-type sentences chosen from the following template: {the men, the

people} who {you, he, she, they} {think, thought, say, said} .

There are 12 prompts for (17a)-type sentences chosen from the following template:

{the man, the person} who {you, he, she, they, I, we} saw and 12 prompts for

(17b)-type sentences chosen from the following template: {the men, the people} who {you,

he, she, they, I we} saw .

Both n-gram and RNN models compute a probability distribution over the word that

would follow the test prompts, and the words with the top 50 probabilities are considered.

enough in the corpus to actually test something.
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Out of these top 50 probable words, the probabilities of singular verbs and plural verbs are

summed and the ratio of singular verbs to all verbs is computed. This ratio should be close

to 1 if the models predict more singular verbs after the last word of the prompt (we would

predict this in cases (16a) and (17a)), and should be close to 0 if the models predict more

plural verbs after the last word of the prompt (we would predict this in cases (16b) and

(17b)).

2.1.2 Results

The ratio of singular verbs to all verbs predicted after the last word of the prompts in

(16) and (17) were computed for both the singular cases (16a, 17a) and plural cases (16b,

17b) and compared. We performed an independent t-test between the ratios for the

prompts in the singular and plural cases. The English models that reach each significance

level are reported in Table 2, and those for Spanish are reported in Table 3.9 The averages

for the a and b groups for these tests in English and Spanish can be found in the Appendix,

in Tables A1 and A2.

** * · N.S.
the man who you think vs.
the men who you think

E3, E4, C5,
C6, C8

C1, C4 E2, C2, C3 E1, C7, NE, NC

the man who you saw vs.
the men who you saw

E3, E4, C2,
C6

C1 E2, C3 E1, C4, C5, C7,
C8, NE, NC

Table 2: Results for English models on Task I: Subject-Verb Agreement. The cell values
represent the models that reach the level of significance specified in the column header.

From the information in Table A1, we see that there is a bias for the networks to

predict singular verbs. However, the relative proportion of singular verbs to plural verbs

seems to be going in the expected direction (more singular verbs for the man who you think

and the man who you saw and fewer singular verbs for the men who you think and the men

who you saw) for many of the models. In particular, models E3, E4, C1, and C6 find

9
By the standard convention, ** represents a p-value less than 0.01, * represents a p-value less than 0.05,

. represents a p-value less than 0.1, and NS represents a p-value greater than 0.1.
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statistically significant di↵erences between the prediction of singular vs. plural verbs in

both cases. Additionally, while not all RNN models achieve significance, most of them (all

but model C4) have a higher average probability for singular verbs in the singular prompt

case than in the plural prompt case. The n-gram models find no di↵erences in the

prediction of singular and plural verbs in either case.

** * · N.S.
el hombre que usted piensa vs.
los hombres que usted piensa

S2 S1 NS

el hombre que usted ve vs.
los hombres que usted ve

S2, NS S1

Table 3: Results for Spanish models on Task I: Subject-Verb Agreement. The cell values
represent the models that reach the level of significance specified in the column header.

Like in English, we see that the Spanish RNN models are able to di↵erentiate between

singular and plural contexts (albeit model S1 only obtained a marginal level of significance

for el hombre que usted ve vs. los hombres que usted ve). The n-gram model similarly fails

at detecting a di↵erence between the prediction of singular and plural verbs in el hombre

que usted piensa vs. los hombres que usted piensa. Interestingly, the n-gram model does

detect a significant di↵erence in the second case.

2.1.3 Discussion

Our results show that many of our English models reach a level of significance less

than 0.05, indicating that they are able to represent subject-verb agreement. Interestingly,

though, while some models report significant di↵erences between the ratio of singular verbs

to all verbs in the singular cases and plural cases, most of the ratios are actually closer to

1. This may suggest that the model has a bias towards singular verbs, making subject-verb

agreement di�cult for it to capture. Unsurprisingly, neither of our English n-gram models

are able to find significant di↵erences between these ratios, since the relevant word in the

sentence (man or men, which signifies whether the verb should be singular or plural) may
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be more words back in the sentence than the n-gram can look.

The Spanish RNN models are able to successfully learn something about subject-verb

agreement, while the Spanish n-gram model fails one of the cases. This is unsurprising,

since the test on which the n-gram fails has the relevant words farther back in the sentence

than the n-gram can look. It is unclear why the n-gram model is able to pass on the second

case, but it is important to note that it fails in the first.

Overall, many RNN models are able to learn about subject-verb agreement to enough

of an extent that they are typically assigning higher probabilities to verbs that match in

agreement with the subject than to verbs that do not.

2.2 Task II: Long-distance sensitivity

2.2.1 Methods

Task II explored the extent to which n-gram and RNN models could be sensitive to

long-distance dependencies. The models tested were the same in Task II as in Task I, and

are reported in Table 1. The models were tested on variations of the prompts in (18), (19),

and (20).

(18) Test A for LD sensitivity

a. the man who thinks I saw

b. the man who you saw

(19) Test B for LD sensitivity

a. the man who saw

b. the man who you saw

(20) Test C for LD sensitivity

a. the man who thinks that I saw

b. the man who you think that I saw
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In English, if a model had some representation of long-distance dependencies, we

would expect it to assign higher probabilities to words that could occur at the left edge of

an object noun phrase10 in (18a), (19a), and (20a) than in (18b), (19b), and (20b),

respectively. The prompts in (18) test whether the model can understand that a gap still

needs to be filled despite the intervening presence of a relative clause in case (a) vs.

whether the model can understand that the gap has been filled in (b), and so a verb should

come next. (19) tests a simpler question: can the model di↵erentiate between a gap-filling

and a no gap-filling context (without intervening relative clauses)? Finally, (20) tests

whether the model can still di↵erentiate between a gap-filling and a no gap-filling context

when both prompts have intervening relative clauses.

In Spanish, we only tested our models on prompts (19) and (20). We excluded prompt

(18) from the testing of the Spanish models since, in Spanish, the word que (corresponding

to the English “that”) is obligatory after the word piensa (corresponding to the English

“think”), so the Spanish and English test cases could not be directly compared. For the

other two cases, we would expect a model that learned something about long-distance

dependencies to show the same patterns as in the English case (we would expect a higher

probability of words signifying the left edge of an object noun phrase in the (a) cases than

in the (b) cases for (19) and (20)).

There are 16 prompts for (18a)-type sentences chosen from the following template:

{the man, the men, the person, the people} who {think/s, thought, say/s, said} I saw

.

There are 24 prompts for (18b)-type sentences chosen from the following template:

{the man, the men, the person, the people} who {you, he, she, they, I, we} saw .

Likewise, there are 24 prompts for (19b)-type sentences.

Thus there are 4 prompts for (19a)-type sentences chosen from the following template:

{the man, the men, the person, the people} who saw .

10
Specifically, the words we examined are the, him, her, his, their, all, them, me, you, some, it, my, your,

this, a, an and us.
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The template for the prompts for (20a) and (20b) varies in the same way as (18a) and

(18b), respectively, so there are 16 (20a)-type prompts and 24 (20b)-type prompts.

Both n-gram and RNN models compute a probability distribution over the word that

would follow the test prompts, and the words with the top 50 probabilities are considered.

Out of these top 50 probable words, the probabilities of words that signify the left edge of

a noun phrase are summed. This total probability should be close to 1 if noun phrases are

very likely after the last word of the prompt (we would predict this in cases (18a), (19a),

and (20a)). It should be less than 1 and closer to 0 if noun phrases are not very likely after

the last word of the prompt (we would predict this in cases (18b), (19b), and (20b)).

2.2.2 Results

The probability of the left edge of a noun phrase predicted after the last word of the

prompts in (18), (19), and (20) were computed for both the no-gap cases (18a, 19a, 20a)

and gap cases (18b, 19b, 20b) and compared. We performed an independent t-test between

the probabilities of the left edge of a noun phrase in the gap and no-gap contexts. The

English models that reach each significance level are reported in Table 4, and those for

Spanish are reported in Table 5. The averages for the a and b groups for these tests in

English and Spanish can be found in the Appendix, in Tables A3 and A4.

** * · N.S.
the man who thinks I saw vs.
the man who you saw

E3, C1, C2, C3, C5,
C8, NE

C4 E1, E2, E4,
C6, C7, NC

the man who saw vs.
the man who you saw

E1, E2, E3, E4, C1, C2,
C3, C5, C8, NE, NC

C6 C4 C7

the man who thinks that I saw vs.
the man who you think that I saw

E2, E3, C2, C3, C4, C5 C1 C8, NE E1, E4, C6,
C7, NC

Table 4: Results for English models on Task II: Long-distance sensitivity. The cell values
represent the models that reach the level of significance specified in the column header.

Many of the RNN models are able to di↵erentiate between gap-filling and no

gap-filling contexts. In particular, models E3, C1, C2, C3, and C5 are able to detect
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stastistically significant di↵erences in all three cases. The n-gram models (in particular,

model NE) are able to detect significant di↵erences in the first two cases, but not in the

third. This intuitively makes sense, since the last three words of the prompts in the first

two cases are di↵erent, but the last three words of the third prompts are the same, so

n-gram models would have a hard time di↵erentiating the two possibilities in the third case

based on the most recently seen words.

** * · N.S.
el hombre que ve vs.
el hombre que usted ve

S1, S2 NS

el hombre que piensa que yo vi vs.
el hombre que usted piensa que yo vi

S1, S2 NS

Table 5: Results for Spanish models on Task II: Long-distance sensitivity. The cell values
represent the models that reach the level of significance specified in the column header.

In Spanish, we see that the RNN models are able to detect significant di↵erences in

gap-filling vs. no gap-filling contexts, and the n-gram model is unable to do so, as

predicted.

2.2.3 Discussion

A few of the English RNN models are able to successfully detect a significant

di↵erence between no-gap and gap contexts in Task II. We would expect the n-gram

models to have no trouble in the second case (where the gap context is local), and this

appears to be the case. We also see that the Europarl n-gram is able to detect significant

di↵erences in the first case. This could certainly be due to the fact that the last two words

of the prompts for this case are di↵erent, so the n-gram can detect this easily, whereas the

last three words for the third case are the same, so it would be harder for a 4-gram model

to tell the di↵erence between a gap and no-gap context in this case.

We see that both of the Spanish RNN models are able to capture the long-distance

dependencies but that the n-gram model fails in both cases. This, combined with the
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success of the English RNN models on the same task, suggests that RNN models are better

equipped to understand long-distance dependencies than n-gram models.

This result corroborates our expectation for Task II, since n-gram models can only

look back n (in this case, 4) words, whereas RNN models can keep track of an unbounded

amount of previous information. Thus long-distance dependencies can be represented by

our RNN models.

2.3 Task III: That-trace sensitivity

2.3.1 Methods

Task III explored the extent to which n-gram and RNN models are sensitive to

that-trace e↵ects. The models tested in Task III were the same as in Task I, and are

reported in Table 1. The models were tested on variations of the prompts in (21), (22), and

(23).

(21) Test A for that-trace sensitivity

a. the man who you think

b. the man who you think that

(22) Test B for that-trace sensitivity

a. who do you think

b. who do you think that

(23) Test C for that-trace sensitivity

a. what do you think

b. what do you think that

Task III is the most important test posed to the models. While Tasks I and II have

examined how well the model can understand various desirable aspects of language

(subject-verb agreement and di↵erentiation between gap-filling and no gap-filling contexts),
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Task III specifically examines the models’ abilities to di↵erentiate that-trace contexts from

those where there should not be a that-trace.

In English, a model that had an understanding of the that-trace e↵ect would assign a

higher probability to verbs following the prompt in the (a) cases than in the (b) cases,

since the (b) cases represent that-traces and thus cannot be followed by verbs. (21) tests

whether the model can tell that a gap-filling context is interrupted (by the presence of that

in case (b)) or not (in case (a)). (22) and (23) test whether the model can detect the

di↵erence in that-trace contexts when they occur in the form of questions.

In Spanish, we tested our models on the same prompts as in English, but the results

for (22) and (23) were identical, so we only report the results from prompt (22). In

Spanish, a model that knew whether the language permitted that-trace contexts would not

find significant di↵erences between the probability of verbs following the prompt in the (a)

or (b) cases, since Spanish does not exhibit that-trace e↵ects.

There were 64 prompts for (21a)-type sentences chosen from the following template:

{the man, the men, the person, the people} who {you, he, she, they} {think, thought, say,

said} . The template for the prompts for (21b)-type sentences varies in the same way

as those for (21a), so there are 64 prompts for (21b)-type sentences.

There are 8 prompts for (22a)-type sentences chosen from the following template: who

do {you, he, she, they} {think, say} that . The templates for the prompts for (22b),

(23a) and (23b) vary in the same way as those for (22a), so there are 8 prompts for

(22a)-type, (23a)-type and (23b)-type sentences.

Both n-gram and RNN models compute a probability distribution over the word that

would follow the test prompts, and those with the top 50 probabilities are considered. Out

of these top 50 probable words, the probabilities of singular verbs, plural verbs, and words

that signify the left edge of a subject noun phrase11 are summed. The ratio of the

probabilities for verbs to the probabilities for the left edge of a subject noun phrase are

11
Specifically, the words we examined are the, he, her, she, his, their, all, they, I, you, some, it, my, your,

this, a, an and we.
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then computed. This ratio should be close to 1 if verbs are much more likely than noun

phrases after the last word of the prompt (we would predict this in cases (21a), (22a), and

(23a) for English). The ratio should be closer to 0 if noun phrases are much more likely

than verbs after the last word of the prompt (we would predict this in cases (21b), (22b),

and (23b) for English).

2.3.2 Results

The ratio of the probability of a verb to the left edge of a subject noun phrase

predicted after the last word of the prompts in (21), (22), and (23) were computed for both

non-that-trace contexts (21a, 22a, and 23a) and that-trace contexts (21b, 22b, and 23b)

and compared. We performed an independent t-test between the ratios of verbs to the left

edge of a subject noun phrase in the that-trace and non-that-trace contexts. The English

models that reach each significance level are reported in Table 6, and those for Spanish are

reported in Table 7. The averages for the a and b groups for these tests in English and

Spanish can be found in the Appendix, in Tables A5 and A6.

** * · N.S.
the man who you think vs.
the man who you think that

E3, NE E1, E2, E4,
C3, C4, C6

C1, C2, C5, C7, C8, NC

who do you think vs.
who do you think that

E3 C4 E2, NE E1, E4, C1, C2, C3, C5,
C6, C7, C8, NC

what do you think vs.
what do you think that

E3, E4, C5 E1, E2, C1,
C3, C6, C8

C7, NE C2, C4, NC

Table 6: Results for English models on Task III: That-trace sensitivity. The cell values
represent the models that reach the level of significance specified in the column header.

We see that many of the RNN models (especially the Europarl models) are able to

detect that-trace contexts. In particular, models E1, E2, E3, and C3 find statistically

significant di↵erences between that-trace and no that-trace contexts in all three cases.

While the Europarl n-gram model detects a significant di↵erence between the two prompts

in the first case, neither it nor the COCA n-gram model detects significant di↵erences in
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either of the other two cases (which is unsurprising, since knowledge about whether a model

is in a that-trace context requires more information than just the previous three words).

** * · N.S.
el hombre que usted piensa vs.
el hombre que usted piensa que

NS S2 S1

quien piensa usted vs.
quien piensa usted que

S1, S2, NS

Table 7: Results for Spanish models on Task III: That-trace sensitivity. The cell values
represent the models that reach the level of significance specified in the column header.

In Spanish, we see that the RNN models do not detect any significant di↵erences

between the prompts in either case. This is what we expected, since Spanish does not

exhibit that-trace e↵ects. The n-gram model does predict a significant di↵erence in the

first case, even though there should not be one.

2.3.3 Discussion

Many of the English Europarl models are sensitive to the that-trace e↵ect, as

evidenced by Table 6. Model E3, in particular, is able to detect a significant di↵erence

between that-trace and non-that-trace contexts. The Europarl n-gram model is able to

detect a significant di↵erence in the first case, which suggests that it may have some

sensitivity to the that-trace e↵ect. However, since we would expect the models’

probabilities for the second and third cases to ressemble the probabilities for the first, we

see that the Europarl n-gram model does not actually detect a significant di↵erence

between the two contexts.

We see that neither of the Spanish RNN models gets a p-value of less than 0.05,

demonstrating that the RNN models can learn that the that-trace e↵ect does not exist in

Spanish. The n-gram model again shows significance when it shouldn’t, suggesting that

there is a that-trace e↵ect in Spanish, when we know there is not one. This further

demonstrates that RNN models are better able to detect these kinds of language-specific
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properties than n-gram models.

The result that Spanish is not sensitive to the that-trace e↵ect is extremely important

because it shows how successful RNN models can be at modeling grammatical properties

that vary cross-linguistically. This is strong evidence that innate grammatical parameters

are not needed in order to learn whether the that-trace filter applies in one’s language: our

models show that it can be learned from the linguistic data.

2.4 Task IV: Long-distance vs. local dependencies

2.4.1 Methods

Task IV explored the extent to which n-gram and RNN models can predict di↵erences

between long-distance dependencies and local dependencies. The models tested in Task IV

were the same as in Task I, and are reported in Table 1. The models were tested on

variations of the prompts in (24), (25), and (26).

(24) Test A for long-distance vs. local dependency sensitivity

a. you think

b. the man who you think

(25) Test B for long-distance vs. local dependency sensitivity

a. you think that

b. the man who you think that

(26) Test C for long-distance vs. local dependency sensitivity

a. the man that

b. the man who you think that

In English, a model that learned something about the di↵erences between local and

long-distance dependencies would be able to assign extremely low probabilities to verbs

occuring after the prompt in (24a) as compared to (24b) since (24b) contains a gap that
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needs to be filled, whereas (24a) does not. The probabilities assigned to verbs following the

prompt in (25a) and (25b) should not di↵er significantly, since the only way to get a verb

after that in both cases should be when that is treated as a demonstrative pronoun (i.e.,

“who do you think that is?”), and not as a complementizer. Finally, we expect a higher

probability assigned to verbs following the prompt in (26a) than in (26b), since (26b)

contains a that-trace (the gap-filling context is interrupted by the presence of that),

whereas (26a) does not contain a gap.

In Spanish, we tested our models on prompts (25) and (26). We excluded (24) from

the testing of our Spanish models because que is obligatory after piensa, so we would not

expect any verbs to follow the prompts in (24). In (25), we would expect more verbs in the

(b) case, since that could be treated as a demonstrative pronoun or a complementizer in

case (b), but it could only be treated as a demonstrative pronoun in case (a). Since verbs

are allowed to follow that as a complementizer in Spanish, we thus expect more verbs in

(25b) than in (25a). In (26), we expect no significant di↵erence between the probability of

verbs in case (a) or (b).

There are 16 prompts for (24a)-type sentences chosen from the following template:

{you, he, she, they} {think, thought, say, said} . The template for the prompts for

(24b) varies in the same way as those for (21a), thus there are 64 prompts for (24b)-type

sentences.

The templates for the prompts for (25a) and (25b) vary in the same way as those for

(24a) and (24b) respectively, thus there are 16 prompts for (25a)-type sentences and 64

prompts for (25b)-type sentences.

There are 4 prompts for (26a)-type sentences chosen from the following template: the

{man, men, person, people} that .

The template for the prompts for (26b) varies in the same way as those for (25b), thus

there are 64 prompts for (26b)-type sentences.

Both n-gram and RNN models compute a probability distribution over the word that
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would follow the test prompts, and those with the top 50 probabilities are considered. Out

of these top 50 probable words, the probabilities of singular verbs, plural verbs, and words

that signify the left edge of a subject noun phrase are summed. The ratio of the

probabilities for verbs to the probabilities for the left edge of a subject noun phrase are

then computed. This ratio should be close to 1 if verbs are much more likely than noun

phrases after the last word of the prompt (we would predict this in cases (24b) and (26a) in

English, and case (25b) for Spanish). The ratio should be closer to 0 if noun phrases are

much more likely than verbs after the last word of the prompt (we would predict this in

cases (24a), (25a), (25b) and (26b) in English).

2.4.2 Results

The ratio of the probability of a verb to the left edge of a subject noun phrase

predicted after the last word of the prompts in (24), (25), and (26) were computed for both

local gaps (24a, 25a, and 26a) and long-distance gaps (24b, 25b, 26b) and compared. We

performed an independent t-test between the ratios of verbs to the left edge of a subject

noun phrase in the local and long-distance contexts. The English models that reach each

significance level are reported in Table 8, and those for Spanish are reported in Table 9.

The averages for the a and b groups for these tests in English and Spanish can be found in

the Appendix, in Tables A7 and A8.

** * · N.S.
you think vs.
the man who you think

E1, E2, E3, E4, C1, C2,
C3, C4, C5, C6, C7, C8

NE, NC

you think that vs.
the man who you think that

E1, E2, E3, E4, C1, C2,
C3, C8

C5 C4, C6, C7,
NE, NC

the man that vs.
the man who you think that

E2, NE, NC E1, E4, C1,
C4, C6

E3 C2, C3, C5,
C7, C8

Table 8: Results for English models on Task IV: Long-distance vs. local dependencies. The
cell values represent the models that reach the level of significance specified in the column
header.
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Many of the RNN models show the pattern that we expected. In particular, models

C4 and C6 show statistically significant di↵erences in the prediction of verbs in cases 1 and

3, but not in case 2. Many of the other RNN models do show a bias in favor of predicting

more verbs after the man who you think that than after you think that. However, models

C4 and C6 do show the desired pattern of behavior. Unsurprisingly, both n-gram models

fail to predict any significant di↵erences in the first two cases, but they do predict a

significant di↵erence in the third case. This again likely has to do with whether the last

three words of both prompts were the same or di↵erent.

** * · N.S.
usted piensa que vs.
el hombre que usted piensa que

S1, S2 NS

el hombre que vs.
el hombre que usted piensa que

NS S2 S1

Table 9: Results for Spanish models on Task IV: Long-distance vs. local dependencies. The
cell values represent the models that reach the level of significance specified in the column
header.

We see exactly what we expected from the Spanish RNN models. Both RNN models

predict a significant di↵erence between the probability of verbs vs. left edges of a noun

phrase in the first case, but not in the second. The n-gram model does exactly the opposite.

2.4.3 Discussion

In Task IV, we were really interested in whether the presence of a “wh” form (in this

case, who) increased the probability of verbs in the absence or presence of “that”. The first

two cases measure these sensitivities, respectively. We would expect that verbs are

significantly more likely in the second prompt of the first case, which is overwhelmingly

what we find for the RNN models (but not the n-gram models). In the second case, we

would expect that neither prompt has a high probability of being followed by a verb, which

we see for some but not all of the RNN models. The third case measured a model’s ability

to di↵erentiate between a local and long-distance context with that. We would expect that
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the first prompt in this case has a higher ratio of verbs to left edges of subject noun

phrases, which we again find for some but not all of the RNN models. While many models

find a significant result for the second case (whereas we would expect no significance due to

neither prompt accepting verbs as the next possible word), the average ratios of verbs to

left edges of a subject noun phrase for most models is well under 1. Thus we know that the

models are actually assigning low probabilities to both prompts in the second case. Again

unsurprisingly, the n-gram models are able to detect a significant di↵erence in the third

case (the n-gram essentially sees the man that vs. you think that), but not in the first or

second (where the last three words are the same for both prompts).

We see that the RNN models predict significant di↵erences in the first case, but not

the second. This is exactly what we predicted, since the second prompt can allow that as a

complementizer or a demonstrative pronoun, but the first prompt can only allow that as a

demonstrative pronoun. In the second case, the RNN models do not find any significant

di↵erences between the ratios of verbs to left edges of subject noun phrases, since both

contexts allow that as either a complementizer or a demonstrative pronoun. The n-gram

model, however, does the exact opposite in both cases. This again shows that n-gram

models are inferior to RNN models in these kinds of tasks.

3 Study 2: Acceptability Judgments

Having found some encouraging results from Study 1, we then assessed the models’

judgments of whole sentences, using the examples from Chacón et al. [3] comparing subject

and object extractions with and without the presence of an intervening adverb. Examples

of these types are shown in (27):

(27) a. *who did he say after midnight that spoke to you?

b. *who did he say that after midnight spoke to you?

c. who did he say after midnight that you spoke to?
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d. who did he say that after midnight you spoke to?

We used the syntactic log-odds ratio (SLOR) of a sentence as a measure of both

models’ judgments, since this measure controls for sentence length and word frequency [17].

SLOR(S) is defined as

SLOR(S) =
logP

model

(S)� logP
unigram

(S)

|S|

By subtracting the log of the unigram probability of a sentence from the log of the

model’s probability of that sentence, we get the log of the ratio of the model probability to

the unigram probability for that sentence. This is useful because it controls for word

frequency (i.e., sentences containing highly frequent words will have larger unigram

probabilities, which will be divided out). We then divide this log probability by the length

of the sentence, which controls for sentence length. Thus a sentence that is much shorter

than another sentence will not necessarily be rated as more likely simply because of the

number of words it contains.

Chacón et al. (2015) presented the sentences of the types in (27) to human

participants and asked them to rate how acceptable each sentence was. He found that

people are, unsurprisingly, sensitive to the that-trace e↵ect in English, but not in Spanish.

More precisely, he found that English speakers rated sentences with a subject extraction

and complementizer lower than sentences without a complementizer, consistent with the

hypothesis that English speakers are sensitive to the that-trace constraint. Additionally, he

found that English speakers rated sentences with an intervening adverbial phrase between

the complementizer and the verb higher than sentences without the intervening adverbial

phrase, demonstrating that English speakers are also sensitive to the “adverb e↵ect”

mentioned in Section 1.2.2. In Spanish, he found that Spanish speakers are not sensitive to

the adjacency of a subject gap and complementizer, suggesting that Spanish speakers are

not sensitive to the that-trace constraint [3].
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Our hope is that the SLOR scores computed on our models’ probabilities will show a

similar pattern. That is, we would expect that the English models rate sentences with a

that-trace e↵ect lower than sentences without one, and similarly rate sentences with an

intevening adverbial phrase higher than sentences that have a that-trace e↵ect but no

intervening adverbial phrase. We would also expect that the Spanish models show no

di↵erences in SLOR scores in the presence of an intervening adverbial phrase vs. no

intervening adverbial phrase when a subject extraction is present.

3.1 Methods

The models tested were the same as those in Study 1, and they are reported in Table

1. There are 16 example sentences for each sentence structure (27a, 27c, 27b, 27d). For a

full list of prompts, refer to Tables A9 and A10 in the Appendix.

Both the n-gram and RNN models computed a probability for the entire sentence.

Additionally, a unigram model computed a probability for the entire sentence. The log of

the unigram probability was then subtracted from the log of the model probabilities, and

the result was divided by the length of the sentence. This left the SLOR score for each

type of sentence.

Finally, we computed the word in the sentence at which the normalized probability

score was a minimum. This was an attempt to measure the word which “surprised” the

model the most, since both models will assign the lowest probabilities to words that do not

seem to logically follow from the words preceding them. We expected, then, that the

models would be most “surprised” when that in a sentence was followed by a verb.

These computations were done for both English and Spanish versions of the prompts.

If our models behaved in the same way as Chacón et al.’s subjects, we would expect

that, in English, the SLOR scores for a-type sentences would be lower than those for b-type

sentences, which would be lower than those for c or d-type sentences. In Spanish, we would

expect the SLOR scores for the a-type sentences to not be significantly lower than those for
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the b, c, or d-type sentences.

3.2 Results

The SLOR scores for the English prompts are reported in Table 10. Note that the a

case is a sentence with a subject extraction where the adverb precedes that (27a), the b

case is a sentence with a subject extraction where the adverb follows that (27b), the c case

is a sentence with an object extraction where the adverb precedes that (27c), and the d

case is a sentence with an object extraction where the adverb follows that (27d).

a b c d
E1 0.6620 0.8098 0.8922 0.9540
E2 0.6630 0.7843 0.9102 0.9794
E3 0.6828 0.8133 0.9284 1.0338
E4 0.6689 0.8107 0.9197 0.9617
C1 0.6915 0.7545 0.7740 0.8535
C2 0.7307 0.8390 0.8234 0.9166
C3 0.8568 0.8701 0.9321 0.9812
C4 0.6549 0.7447 0.7282 0.8095
C5 0.6431 0.6880 0.7758 0.7555
C6 0.7619 0.7859 0.9116 0.9149
C7 0.6543 0.6428 0.8416 0.8064
C8 0.6444 0.6785 0.7868 0.8179
NE 0.0851 0.2238 0.1339 0.2160
NC 0.2957 0.3992 0.2542 0.3231

Table 10: SLOR scores for the English models. The sentence type with the lowest SLOR
score is bolded.

The p-values for the tests of significant di↵erences between English a sentences and

the other types are shown in Table 11.

The SLOR scores for the Spanish prompts are reported in Table 12.

The p-values for the tests of significant di↵erences between Spanish a sentences and

the other types are shown in Table 13.

Our calculations of the word that produced the lowest normalized probability value

for the entire sentence were inconclusive. We found that the same model would be most
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b c d
E1 ** ** **
E2 ** ** **
E3 ** ** **
E4 ** ** **
C1 ** . **
C2 ** * **
C3 NS . **
C4 ** . **
C5 . * *
C6 NS ** *
C7 NS ** **
C8 NS ** **
NE ** NS **
NC ** NS NS

Table 11: Significance levels for di↵erences between English a and other types of sentences.

a b c d
S1 1.0091 0.9444 0.7833 0.6763
S2 0.9914 0.9335 0.7913 0.6683
NS 0.5289 0.4083 0.0091 -0.0954

Table 12: SLOR scores for the Spanish models.

“surprised” by di↵erent parts of the sentence depending on the sentence. The results for

five example sentences are shown in Table 14. While the only results reported in the Table

are from our Europarl models, we found a similar lack of consistency from the COCA

models.
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b c d
S1 NS NS NS
S2 NS NS NS
NS NS NS NS

Table 13: Significance levels for di↵erences between Spanish a and other types of sentences.

sentence E1 E3 E5 E7
who did he hope around lunchtime that would dance with you hope around around around
who did he hope that around lunchtime would dance with you hope around who who
who did he hope around lunchtime that you would dance with hope around around around
who did he hope that around lunchtime you would dance with hope around who who

who did he insist on christmas eve that met you met who who who

Table 14: Predictions for the most “surprising” word by the English Europarl models.

We also ran statistical regressions to determine which factors influenced the SLOR

scores. We found that our results are best explained through the combination of adverb

position (t = -3.560, p < 0.001) and subject vs. object extraction (t = -6.358, p < 0.001).

We did not find an interaction e↵ect, contrary to the results that Chacón et al. (2015)

found.

3.3 Discussion

The minimum SLOR values were highlighted in Table 10. These are the scores for the

sentences that the models find least probable. Thus we should expect that for English,

sentences of type a (27a) should be the least probable, since they violate the that-trace

e↵ect.

On all of the Europarl RNN models, and on 7 out of 8 of the COCA RNN models, we find

this result. We also see this result for the Europarl n-gram model, but not for the COCA

n-gram model. At first observation, this may appear to suggest that the Europarl n-gram

model is just as capable of detecting that-trace violations as RNN models. However, the

di↵erence we are primarily concerned with is that between a sentences and c sentences, since
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those two types of sentences di↵er only in whether there is a subject extraction or an object

extraction. We see this di↵erence for all of the Europarl RNN models and for all of the

COCA RNN models (although some di↵erences are only marginally significantly di↵erent),

but not for either n-gram model. This suggests that a more sophisticated architecture like

that of a RNN is necessary in order to be sensitive to that-trace e↵ects.

Interestingly, we also see an increase in SLOR score from a sentences to b sentences in

all of the models except for C7. This increase in probability shows that the models can also

account for the adverb e↵ect (since they find b sentences, in which the adverb interrupts the

that-V sequence, more probable).

In Spanish, we would expect that the di↵erence between a and c is not significant, since

Spanish is not sensitive to the that-trace e↵ect. We see this in all of the models, which is

unsurprising.

4 General Discussion

In English, we see that there are RNN models that are capable of succeeding on some

of the four tasks in Study 1. In particular, model E3 succeeds on all four of the tasks

(except case 2 of Task IV), providing evidence for the possibility of RNN models to

successfully detect the kinds of dependencies we are interested in.

While the n-gram models are able to pass some tests in Study 1, it is clear that the

more sophisticated RNN models are needed in order to make any claims about learnability

of grammatical properties from the linguistic data.

The tasks in Study 1 were intended to test how good our models were at representing

certain important properties of language. The first task examined the extent to which

models could learn subject-verb agreement on the basis of the linguistic data that they

were trained on. Many of the RNN models were able to successfully learn that singular

verbs should be predicted after a singular subject noun and that plural verbs should be
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predicted after a plural subject noun. Representing subject-verb agreement is important

for any language model to be considered seriously. If we wanted to propose a model that

could represent long-distance dependencies but could not di↵erentiate between the man is

vs. the man are, we would not consider this an objectively good language model. Thus the

fact that our RNN models could tell the di↵erence between singular and plural contexts

allowed us to continue testing them.

Task II examined the extent to which models could learn about gap and no-gap

contexts. This was an extremely important test for the RNN models to pass if we wanted to

present them with that-trace examples. Since that-trace contexts involve an understanding

of gap vs. no-gap contexts, the fact that our RNN models were able to di↵erentiate

between these contexts enabled us to then present them with that-trace examples.

Task III tested whether the models could di↵erentiate between that-trace contexts

and contexts without a that-trace. In English, the models were able to di↵erentiate

between these contexts, which is what we would expect, since English does not permit

violations of the that-trace filter. In Spanish, the models did not di↵erentiate between

these contexts, which is what we would expect, since Spanish does not exhibit that-trace

e↵ects. These two results showed that RNN models trained on linguistic data (either

English or Spanish) were able to learn whether the that-trace filter held in that language.

These results provide the strongest evidence calling for the re-evaluation of the poverty of

the stimulus motivation for the null subject parameter.

Task IV explored the extent to which the presence of a “wh” form increased the

probability of verbs in the absence or presence of “that”. Many of the RNN models again

behave in the way we would expect, with the “wh” form increasing the probability of verbs

in the absence of “that” and decreasing the probability of verbs in the presence of “that”.

This was our final test that verified that these RNN models were actually good models of

language. Since (at least some of) these models were able to pass Task IV, we know that

they are capable of representing long-distance vs. local dependencies.

41



Study 2 provided a di↵erent measure which also showed us that our RNN models were

sensitive to the that-trace e↵ect in English but not in Spanish. Additionally, we found that

the RNN models were able to successfully represent the “adverb e↵ect,” whereby the

presence of an intervening adverbial phrase improves the acceptability of a that-trace

sentence.

We have shown that RNN models are better than n-gram models at detecting

language-specific grammatical properties. Additionally, RNN models are capable of

learning these grammatical properties from the data they were trained on. Since the RNNs

have no built-in or “innate” grammatical parameters, the fact that they are able to learn

whether a language is sensitive to the that-trace e↵ect suggests that perhaps children could

similarly learn such a sensitivity on the basis of their linguistic input. We trained our RNN

models on recorded sentences of English, where examples of that-trace sentences (even

without the that) are extremely rare, yet the models were able to detect that-trace

contexts. This seriously calls into question the poverty of the stimulus argument for the

existence of an innate grammatical parameter that enables children to learn rare linguistic

properties.

While the kind of data our RNN models are trained on is certainly not the kind of

data children are getting from their context, this study raises the issue of learnability from

data and undermines the theory of innate grammatical parameters. Our results open the

door for future research and indeed necessitate a re-evaluation of current theories of

learnability.

5 Limitations and Future Directions

Since one of our main corpora came from recordings of European parliamentary

proceedings, there is some question as to what our results can tell us about language

learning in children. Certainly the kind of linguistic input children get is di↵erent than the

42



kind of language used in European parliament. In order to claim that children could learn

whether the that-trace e↵ect holds in their language on the basis of their linguistic input,

we would need to know that the Europarl corpus had distributions of relevant syntactic

structures that were similar to those in a child’s input. For example, does the Europarl

corpus contain more instances of sentences with the syntactic structure of the man who you

think that than a child would be exposed to? In order to answer this question, we would

need to compare these distributions to those found in a corpus containing the kinds of

speech children are more likely to be hearing. One such corpus, Childes, does exist, but

contains only 2 million words of child-directed speech, and the sentences are often very

short. Some examples of the data are shown in Table 15.

line sentence
1 okay pick that box up
2 okay
3 here we go
4 and whats this one box
5 oh
6 I dont know
7 what is it box
8 oh wow
9 look at that house
10 yeah
11 oh whats this
12 a bed
13 which rooms do they go in
14 know what know what
15 look
16 look
17 see

Table 15: A section of data from the Childes corpus.

While the Childes corpus is a realistic representation of children’s linguistic input, the

smaller amount of available data will severely limit a computational model’s ability to

learn certain grammatical constraints.

On the other hand, it would be interesting and useful to use a corpus that better
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represents the kinds of linguistic input children are getting when they are already sensitive

to that-trace violations. If people cannot di↵erentiate between that-trace and

non-that-trace contexts until age 10, for example, then it would be better to use a corpus

that more accurately represented the linguistic input to a 10-year-old (which would

certainly be di↵erent from data in Childes). Our study provides a good motivation for

future work exploring that-trace sensitivity in humans.

Additionally, it would be interesting to apply the results of this study to a bilingual

learning source. The results suggest that English-Spanish bilinguals would be able to learn

whether the that-trace e↵ect held in both languages on the basis of her English and

Spanish linguistic input. However, future studies examining whether bilingual speakers

make mistakes in that-trace judgments (i.e., say an English sentence which violates the

that-trace e↵ect) would be an interesting future research direction to pursue.

Finally, the sentences in Study 2 (shown in Tables A9 and A10) seem unusual. For

the purposes of examining people’s reactions to that-trace violations, the sentences work

well because we only need to compare the acceptability score for non-that-trace sentences

to that for that-trace sentences. However, we could imagine that participants find many of

the Study 2 sentences strangely worded and they assign lower acceptability judgments to

all sentences. While they still might find that-trace sentences most unacceptable, this is

not really the type of reaction we want people to have. Instead, we want people to have no

trouble rating non-that-trace sentences as good and rating that-trace sentences as bad.

Future work might attempt to make the example sentences presented to people more clear.

Despite these limitations, our study found convincing evidence for a reassessment of

traditional learnability arguments, specifically with respect to the poverty of the stimulus

argument for the null subject parameter.
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7 Appendix

E1 E2 E3 E4 C1 C2 C3 C4 C5 C6 C7 C8 NE NC
A: a 0.79 0.66 0.87 0.81 0.82 0.89 0.64 0.63 0.87 0.93 0.76 0.92 0.9 0.81
A: b 0.7 0.56 0.51 0.59 0.67 0.78 0.57 0.52 0.56 0.65 0.51 0.51 0.9 0.81
B: a 1 0.88 0.94 0.95 0.69 0.92 0.76 0.95 1 0.99 0.94 0.94 1 0.83
B: b 1 0.6 0.37 0.57 0.4 0.88 0.63 0.98 0.86 0.84 0.78 0.93 1 0.83

Table A1: Average values for English models on Task I: Subject-Verb Agreement.

S1 S2 NS
A: a 0.97 0.99 1
A: b 0.89 0.9 1
B: a 0.97 1 1
B: b 0.72 0.82 0.82

Table A2: Average values for Spanish models on Task I: Subject-Verb Agreement.

E1 E2 E3 E4 C1 C2 C3 C4 C5 C6 C7 C8 NE NC
A: a 0.44 0.37 0.44 0.35 0.52 0.5 0.41 0.52 0.39 0.35 0.46 0.43 0.43 0
A: b 0.44 0.41 0.4 0.34 0.36 0.37 0.25 0.5 0.37 0.33 0.45 0.32 0.32 0.01
B: a 0.43 0.56 0.47 0.52 0.44 0.51 0.59 0.6 0.41 0.38 0.39 0.46 0.46 0
B: b 0.24 0.35 0.12 0.42 0.25 0.3 0.2 0.56 0.25 0.3 0.4 0.27 0.27 0
C: a 0.42 0.44 0.5 0.4 0.5 0.46 0.39 0.56 0.34 0.45 0.4 0.33 0.33 0.01
C: b 0.42 0.42 0.41 0.4 0.41 0.42 0.25 0.53 0.29 0.45 0.39 0.25 0.25 0.01

Table A3: Average values for English models on Task II: Long-distance sensitivity.
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S1 S2 NS
B: a 0.11 0.09 0
B: b 0.06 0.07 0
C: a 0.09 0.22 0
C: b 0.02 0.06 0

Table A4: Average values for Spanish models on Task II: Long-distance sensitivity.

E1 E2 E3 E4 C1 C2 C3 C4 C5 C6 C7 C8 NE NC
A: a 1.01 0.49 4.4 0.53 5.19 2.51 8.71 1.08 0.43 0.71 0.37 0.72 0.15 0.11
A: b 0.1 0.45 0.6 0.34 0.8 1.84 1.36 0.15 1.12 0.41 0.46 0.84 0.06 0.15
B: a 0.04 0.06 0.09 0.03 0.1 0.05 0.12 0.04 0.16 0.32 0.27 0.14 0.09 0.08
B: b 0.03 0.02 0.02 0.03 0.09 0.21 0.33 0.11 0.36 0.23 0.31 0.21 0.05 0.13
C: a 0.38 1.97 4.82 0.76 1.14 0.9 1.44 0.26 2.28 1.56 0.81 1.08 0.09 0.08
C: b 0.08 0.13 0.19 0.13 0.15 0.96 0.63 0.22 0.27 0.23 0.55 0.33 0.05 0.13

Table A5: Average values for English models on Task III: That-trace sensitivity.

S1 S2 NS
A: a 5.48 3.8 1.19
A: b 6.38 1.98 0.97
B: a 2.83 2.11 2.93
B: b 4.04 1.7 3.22

Table A6: Results for Spanish models on Task III: That-trace sensitivity.

E1 E2 E3 E4 C1 C2 C3 C4 C5 C6 C7 C8 NE NC
A: a 0.03 0.02 0.03 0.06 0.02 0.01 0.02 0.03 0.06 0.05 0.05 0.03 0.15 0.11
A: b 1.01 0.49 4.4 0.53 5.19 2.51 8.71 1.08 0.43 0.71 0.37 0.72 0.15 0.11
B: a 0.01 0.01 0.01 0.02 0.21 0.22 0.07 0.15 1.38 0.62 0.49 0.41 0.06 0.15
B: b 0.1 0.45 0.6 0.34 0.8 1.84 1.36 0.15 1.12 0.41 0.46 0.84 0.06 0.15
C: a 2.5 1.62 2.65 1.79 3.15 2.59 1.09 1.54 1.21 1.67 1.81 2.48 0.48 0.5
C: b 0.1 0.45 0.6 0.34 0.8 1.84 1.36 0.15 1.12 0.41 0.46 0.84 0.06 0.15

Table A7: Results for English models on Task IV: Long-distance vs. local dependencies.

S1 S2 NS
B: a 0.72 0.56 0.97
B: b 6.38 1.98 0.97
C: a NA 36.6 36.6
C: b 6.38 1.98 0.97

Table A8: Results for Spanish models on Task IV: Long-distance vs. local dependencies.
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1a who did he hope around lunchtime that would dance with you
1b who did he hope that around lunchtime would dance with you
1c who did he hope around lunchtime that you would dance with
1d who did he hope that around lunchtime you would dance with
2a who did he assume around twelve oclock that applauded you
2b who did he assume that around twelve oclock applauded you
2c who did he assume around twelve oclock that you applauded
2d who did he assume that around twelve oclock you applauded
3a who did he insist on christmas eve that met you
3b who did he insist that on christmas eve met you
3c who did he insist on christmas eve that you met
3d who did he insist that on christmas eve you met
4a who did he notice every friday that sings with you
4b who did he notice that every friday sings with you
4c who did he notice every friday that you sing with
4d who did he notice that every friday you sing with
5a who did he speculate before class that hugged you
5b who did he speculate that before class hugged you
5c who did he speculate before class that you hugged
5d who did he speculate that before class you hugged
6a who did he remark every year that goes fishing with you
6b who did he remark that every year goes fishing with you
6c who did he remark every year that you go fishing with
6d who did he remark that every year you go fishing with
7a who did he realize after reading the newspaper that wrote an article about you
7b who did he realize that after reading the newspaper wrote an article about you
7c who did he realize after reading the newspaper that you wrote an article about
7d who did he realize that after reading the newspaper you wrote an article about
8a who did he think before investigating the issue that accused you of cheating
8b who did he think that before investigating the issue accused you of cheating
8c who did he think before investigating the issue that you accused of cheating
8d who did he think that before investigating the issue you accused of cheating

Table A9: First half of prompts for Study 2, from Chacón et al. (2015)
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9a who did he admit after waiting a long time that should meet you
9b who did he admit that after waiting a long time should meet you
9c who did he admit after waiting for a long time that you should meet
9d who did he admit that after waiting a long time you should meet
10a who did he imply during the spring tryouts that beat you
10b who did he imply that during the spring tryouts beat you
10c who did he imply during the spring tryouts that you beat
10d who did he imply that during the spring tryouts you beat
11a who did he believe during the prison visit that shared a cell with you
11b who did he believe that during the prison visit shared a cell with you
11c who did he believe during the prison visit that you shared a cell with
11d who did he believe that during the prison visit you shared a cell with
12a who did he hope without hesitation that will skydive with you
12b who did he hope that without hesitation will skydive with you
12c who did he hope without hesitation that you will skydive with
12d who did he hope that without hesitation you will skydive with
13a who did he remark after much consideration that greeted you
13b who did he remark that after much consideration greeted you
13c who did he remark after much consideration that you greeted
13d who did he remark that after much consideration you greeted
14a who did he speculate last summer that married you
14b who did he speculate that last summer married you
14c who did he speculate last summer that you married
14d who did he speculate that last summer you married
15a who did he insist at the beach that went scuba diving with you
15b who did he insist that at the beach went scuba diving with you
15c who did he insist at the beach that you went scuba diving with
15d who did he insist that at the beach you went scuba diving with
16a who did he say after midnight that spoke to you
16b who did he say that after midnight spoke to you
16c who did he say after midnight that you spoke to
16d who did he say that after midnight you spoke to

Table A10: Second half of prompts for Study 2, from Chacón et al. (2015)
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